Source code for exo_k.hires_spectrum

# -*- coding: utf-8 -*-
"""
@author: jeremy leconte
"""
import os.path
import numpy as np
import pandas as pd
import h5py
from exo_k.util.interp import rm_molec,unit_convert
from exo_k.settings import Settings
from exo_k.util.filenames import select_kwargs
from .util.spectral_object import Spectral_object
from .util.cst import KBOLTZ, N_A

[docs] class Hires_spectrum(Spectral_object): """A class defining a Hires_spectrum object. """ def __init__(self, filename, file_kdata_unit='unspecified', kdata_unit='unspecified', mult_factor=None, binary=False, **kwargs): """Reads a high-resolution spectrum from a file (either hdf5 or ascii). Parameters ---------- filename: str Full pathname to the file. Extension defines the format used. file_kdata_unit: str Specifies the unit for the opacity data in the file. This is needed for ascii formats as the units are not known. The type of quantity may differ whether we are handling cross sections (surface) or absorption coefficients (inverse length) kdata_unit: str Unit to convert to. mult_factor: float A multiplicative factor that can be applied to kdata (for example to correct for any dilution effect, or specific conversion). see :func:`read_ascii` for additional arguments to use with ascii files """ super().__init__() self.filename=None self.kdata=None self.kdata_unit='unspecified' self.data_type=None # 'xsec' or 'abs_coeff' if filename.lower().endswith(('.hdf5', '.h5')): self.read_hdf5(filename) elif filename.lower().endswith(('.out','.bin')): if filename.lower().endswith(('.bin')): binary = True self.read_turbet(filename, file_kdata_unit=file_kdata_unit, binary=binary, **kwargs) elif binary: self.read_binary(filename, **select_kwargs(kwargs,['mass_amu'])) else: self.read_ascii(filename, **select_kwargs(kwargs,['skiprows','wn_column', 'kdata_column','data_type'])) if mult_factor is not None: self.kdata=self.kdata*mult_factor if self.data_type=='xsec': if (Settings()._convert_to_mks) and (kdata_unit == 'unspecified'): kdata_unit='m^2/molecule' elif self.data_type=='abs_coeff': if (Settings()._convert_to_mks) and (kdata_unit == 'unspecified'): kdata_unit='m^-1' else: raise RuntimeError("""Data type (xsec or abs_coeff) not recognized. You should specify it with the data_type keyword (and probably the file_kdata_unit as well).""") self.convert_kdata_unit(kdata_unit=kdata_unit,file_kdata_unit=file_kdata_unit)
[docs] def read_turbet(self, filename, data_type='abs_coeff', file_kdata_unit='cm^-1', wns=None, binary=False, wns_filename='sigma_grid.bin', **kwargs): """Read native format from HR code by M. Turbet anf G. Chaverot Parameters ---------- filename: str Initial hires-spectrum filename. """ import os if data_type is None: raise RuntimeError("You did not provide a data_type ('xsec' or 'abs_coeff')") self.data_type = data_type self.filename = filename directory = os.path.dirname(filename) if binary: with open(filename, 'rb') as f: self.kdata = np.fromfile(f, dtype=np.float64) else: raw = pd.read_csv(filename) self.kdata = raw.values.flatten() self.kdata_unit = file_kdata_unit if wns is None: if binary: wns_filename = directory + '/' + wns_filename with open(wns_filename, 'rb') as f: self.wns = np.fromfile(f, dtype=np.float64) else: wns_filename = directory + '/wavelength_grid.out' raw = pd.read_csv(wns_filename) self.wns = raw.values.flatten() else: self.wns = wns self.wn_unit = 'cm^-1'
[docs] def read_ascii(self, filename, data_type=None, skiprows=0, wn_column=None, kdata_column=None): """Read native kspectrum format Parameters ---------- filename: str Initial hires-spectrum filename. data_type: 'xsec' or 'abs_coeff' Whether the data read are cross-sections or absorption coefficients. skiprows: int, optional Number of header lines to skip. For the latest Kspectrum format, the header is skipped automatically. wn_column/kdata_column: int, optional Number of column to be read for wavenumber and kdata in python convention (0 is first, 1 is second, etc.) """ if data_type is None: raise RuntimeError("You did not provide a data_type ('xsec' or 'abs_coeff')") self.data_type=data_type self.filename=filename with open(filename, 'r') as file: tmp = file.readline().split() if tmp[0]=='Pressure': #File treated as a Kspectrum like format, implying P in atm, Kdata in m^-1 for _ in range(4): file.readline() nb_mol = int(file.readline().split()[0]) skiprows=skiprows+9+5*nb_mol if kdata_column is None: kdata_column=2 else: if kdata_column is None: kdata_column=1 if wn_column is None: wn_column=0 raw=np.genfromtxt(filename, skip_header=skiprows, usecols=(wn_column,kdata_column), names=('wns','kdata')) self.kdata=raw['kdata'] self.wns=raw['wns']
[docs] def write_hdf5(self, filename): """Writes kspectrum file to hdf5 """ if not filename.lower().endswith(('.hdf5', '.h5')): filename=filename+'.h5' with h5py.File(filename, 'w') as f: f.attrs["data_type"] = self.data_type f.create_dataset("wns", data=self.wns,compression="gzip") f["wns"].attrs["units"]=self.wn_unit f.create_dataset("kdata", data=self.kdata,compression="gzip") f["kdata"].attrs["units"]=self.kdata_unit
[docs] def read_hdf5(self, filename): """Reads kspectrum file from hdf5 """ self.filename=filename with h5py.File(filename, 'r') as f: self.data_type=f.attrs['data_type'] self.wns=f['wns'][...] if 'units' in f['wns'].attrs.keys(): self.wn_unit=f['wns'].attrs['units'] self.kdata=f['kdata'][...] self.kdata_unit=f['kdata'].attrs['units']
[docs] def read_binary(self, filename, mass_amu=None): """Reads spectra file in binary format (petitRADTRANS style) Assumed to be in cm^2/g with wavelength in cm. Will be automatically converted to cm^2/molecule and wns in cm^-1 (unless conversion to mks is requested). """ if mass_amu is None: raise RuntimeError('Need atomic mass in amu to read petitRADTRANS binary files') self.filename=filename dirname=os.path.dirname(self.filename) self.data_type='xsec' wls_cm=np.fromfile(os.path.join(dirname,'wlen.dat')) self.wns=1./wls_cm[::-1] self.kdata=np.fromfile(self.filename)[::-1]*mass_amu/N_A self.kdata_unit='cm^2/molecule'
[docs] def convert_kdata_unit(self, kdata_unit='unspecified', file_kdata_unit='unspecified'): """Converts kdata to a new unit (inplace) Parameters ---------- kdata_unit: str String to identify the units to convert to. Accepts 'cm^2', 'm^2' or any surface unit recognized by the astropy.units library. If ='unspecified', no conversion is done. In general, kdata should be kept in 'per number' or 'per volume' units (as opposed to 'per mass' units) as composition will always be assumed to be a number or volume mixing ratio. Opacities per unit mass are not supported yet. Note that you do not need to specify the '/molec' or '/molecule' in the unit. file_kdata_unit : str String to specify the current kdata unit if it is unspecified or if you have reasons to believe it is wrong (e.g. you just read a file where you know that the kdata grid and the kdata unit do not correspond) """ #if kdata_unit==file_kdata_unit and self.kdata_unit != 'unspecified': return tmp_k_u_in=rm_molec(file_kdata_unit) tmp_k_u_out=rm_molec(kdata_unit) tmp_k_u_file=rm_molec(self.kdata_unit) self.kdata_unit, conversion_factor=unit_convert( \ 'kdata_unit',unit_file=tmp_k_u_file,unit_in=tmp_k_u_in,unit_out=tmp_k_u_out) if self.data_type=='xsec': self.kdata_unit=self.kdata_unit+'/molecule' else: self.kdata_unit=self.kdata_unit self.kdata=self.kdata*conversion_factor
def __repr__(self): """Method to output header """ output=""" file : {file} data type : {dtype} data unit : {ku} size : {size} wns : {wns} wn units : {wnu} """.format(file=self.filename, ku=self.kdata_unit, wns=self.wns, wnu=self.wn_unit, dtype=self.data_type, size= self.wns.size) return output
[docs] def plot_spectrum(self, ax, x_axis='wls', xscale=None, yscale=None, x=1., **kwarg): """Plot the spectrum Parameters ---------- ax : :class:`pyplot.Axes` A pyplot axes instance where to put the plot. x_axis: str, optional If 'wls', x axis is wavelength. Wavenumber otherwise. x/yscale: str, optional If 'log' log axes are used. """ toplot=self.kdata*x if x_axis == 'wls': ax.plot(self.wls,toplot,**kwarg) ax.set_xlabel('Wavelength (micron)') else: ax.plot(self.wns,toplot,**kwarg) ax.set_xlabel('Wavenumber (cm$^{-1}$)') if self.data_type=='xsec': ax.set_ylabel('Cross section ('+self.kdata_unit+')') else: ax.set_ylabel('Abs. Coefficient ('+self.kdata_unit+')') if xscale is not None: ax.set_xscale(xscale) if yscale is not None: ax.set_yscale(yscale)
[docs] def convert_data_type(self, pressure, temperature, kdata_unit=None, convert_to=None): """Converts from one data_type (cross sections or absorption coefficents) to the other (inplace). Conversion to mks is done by default if a conversion takes place and no kdata_unit is specified. Parameters ---------- pressure: float Pressure used for the conversion (in Pa) temperature: float Temperature used for the conversion (in K) kdata_unit: str (optional) Unit to use for the output convert_to: str ('xsec' or 'abs_coeff', optional) Data type to convert to. Nothing is done if convert_to is equal to self.data_type. If None, converts to the other type. """ if convert_to==self.data_type: return if self.data_type=='xsec': self.convert_kdata_unit(kdata_unit='m^2') #back to mks self.kdata=self.kdata*pressure/(KBOLTZ*temperature) self.data_type='abs_coeff' self.kdata_unit='m^-1' else: self.convert_kdata_unit(kdata_unit='m^-1') #back to mks self.kdata=self.kdata*KBOLTZ*temperature/pressure self.data_type='xsec' self.kdata_unit='m^2/molecule' if kdata_unit is not None: try: self.convert_kdata_unit(kdata_unit=kdata_unit) except: print("""If you have an error here, it's probably because the units specified are inconsistent with the final data_type.""") raise RuntimeError()
[docs] def clip_spectral_range(self, wn_range=None, wl_range=None): """Limits the data to the provided spectral range (inplace): * Wavenumber in cm^-1 if using wn_range argument * Wavelength in micron if using wl_range """ if (wn_range is None) and (wl_range is None): return if wl_range is not None: if wn_range is not None: raise RuntimeError('Should provide either wn_range or wl_range, not both!') _wn_range=np.sort(10000./np.array(wl_range)) else: _wn_range=np.sort(np.array(wn_range)) iw_min, iw_max=np.searchsorted(self.wns, _wn_range, side='left') self.wns=self.wns[iw_min:iw_max] self.Nw=self.wns.size self.kdata=self.kdata[iw_min:iw_max]