Source code for exo_k.atm

# -*- coding: utf-8 -*-
"""
@author: jeremy leconte

This module contain classes to handle the radiative properties of atmospheres.
This alows us to compute the transmission and emission spectra
of those atmospheres.

Physical properties of the atmosphere are handled in atm_profile.py.

The nomenclature for layers, levels, etc, is as follows (example with 4 layers; Nlay=4):

::

    -------------------  Model top or first level (plev[0])
    - - - - - - - - - -  First atmopheric layer (play[0]=plev[0], tlay[0], xlay[0])

    -------------------  plev[1]

    - - - - - - - - - -  play[1], tlay[1], xlay[1]

    -------------------  plev[2]

    - - - - - - - - - - play[2], tlay[2], xlay[2]

    -------------------  plev[3]

    - - - - - - - - - -  bottom layer (play[Nlay-1]=psurf, tlay[3], xlay[3])
    ------------------- Surface (plev[Nlev-1=Nlay]=psurf)
    ///////////////////

.. image:: /images/atm_schema.png


Temperatures (`tlay`) and volume mixing ratios (`xlay`) are provided at the
*mid layer* point (`play`) (Note that this does not mean
that this point is the middle of the layer, in general, it is not).

If pressure levels are not specified by the user with `logplevel`,
they are at the mid point between
the pressure of the layers directly above and below. The pressure of the
top and bottom levels are counfounded with the pressure of the
top and bottom mid layer points.

For radiative calculations, the source function (temperature) needs to be known at
the boudaries of the *radiative* layers but the opacity needs to be known
inside the *radiative* layer.
For this reason, there are `Nlay-1` radiative layers and they are offset
with respect to atmospheric layers.
Opacities are computed at the center of those radiative layers, i.e. at the pressure levels.
The temperature is interpolated at these levels with an arithmetic average.
Volume mixing ratios are interpolated using a geometric average. 

"""
from typing import Optional

import numpy as np
import warnings
from .atm_profile import Atm_profile
from .util.cst import PI, SIG_SB
from .util.radiation import Bnu_integral_num, Bnu, rad_prop_corrk, rad_prop_xsec,\
    Bnu_integral_array, path_integral_corrk, path_integral_xsec
from .two_stream import two_stream_toon as toon # noqa
from .two_stream import two_stream_lmdz as lmdz # noqa
from .util.interp import gauss_legendre
from .util.spectrum import Spectrum


[docs] class Atm(Atm_profile): """Class based on Atm_profile that handles radiative trasnfer calculations. Radiative data are accessed through the :any:`gas_mix.Gas_mix` class. """ def __init__(self, k_database = None, cia_database = None, a_database = None, wn_range = None, wl_range = None, internal_flux = 0., rayleigh = False, flux_top_dw = 0., Tstar = 5570., albedo_surf = 0., wn_albedo_cutoff = 5000., **kwargs): """Initialization method that calls Atm_Profile().__init__(**kwargs) and links to Kdatabase and other radiative data. """ super().__init__(**kwargs) self.known_spectral_axis = False self.number_computation_albedo_surf_nu = 0 self.number_computation_flux_top_dw_nu = 0 self.set_k_database(k_database) self.set_cia_database(cia_database) self.set_a_database(a_database) self.set_spectral_range(wn_range = wn_range, wl_range = wl_range) self.set_internal_flux(internal_flux) self.compute_flux_top_dw_nu = True self.set_incoming_stellar_flux(flux_top_dw = flux_top_dw, Tstar = Tstar, **kwargs) self.compute_albedo_surf_nu = True self.set_surface_albedo(albedo_surf = albedo_surf, wn_albedo_cutoff = wn_albedo_cutoff) self.set_rayleigh(rayleigh = rayleigh) self.flux_net_nu=None self.kernel=None
[docs] def set_k_database(self, k_database=None): """Change the radiative database used by the :class:`Gas_mix` object handling opacities inside :class:`Atm`. See :any:`gas_mix.Gas_mix.set_k_database` for details. Parameters ---------- k_database: :class:`Kdatabase` object New Kdatabase to use. """ self.gas_mix.set_k_database(k_database=k_database) self.k_database=self.gas_mix.k_database self.Ng=self.gas_mix.Ng # to know whether we are dealing with corr-k or not and access some attributes. if self.k_database is not None: #self.Nw = self.k_database.Nw #self.wnedges = self.k_database.wnedges #self.wns = self.k_database.wns #self.dwnedges = np.diff(self.wnedges) self.compute_albedo_surf_nu = True self.number_computation_albedo_surf_nu = 0 self.compute_flux_top_dw_nu = True self.number_computation_flux_top_dw_nu = 0 self.known_spectral_axis = False
[docs] def set_cia_database(self, cia_database=None): """Change the CIA database used by the :class:`Gas_mix` object handling opacities inside :class:`Atm`. See :any:`gas_mix.Gas_mix.set_cia_database` for details. Parameters ---------- cia_database: :class:`CIAdatabase` object New CIAdatabase to use. """ self.gas_mix.set_cia_database(cia_database=cia_database)
[docs] def set_a_database(self, a_database=None): """Change the Aerosol database used by the :class:`Aerosols` object handling aerosol optical properties. See :any:`aerosols.Aerosols.set_a_database` for details. Parameters ---------- a_database: :class:`Adatabase` object New Adatabase to use. """ self.aerosols.set_a_database(a_database=a_database)
[docs] def set_spectral_range(self, wn_range = None, wl_range = None): """Sets the spectral range in which computations will be done by specifying either the wavenumber (in cm^-1) or the wavelength (in micron) range. See :any:`gas_mix.Gas_mix.set_spectral_range` for details. """ self.gas_mix.set_spectral_range(wn_range = wn_range, wl_range = wl_range) self.compute_albedo_surf_nu = True self.compute_flux_top_dw_nu = True self.known_spectral_axis = False
[docs] def set_incoming_stellar_flux(self, flux_top_dw: Optional[float] = None, Tstar: Optional[float] = None, stellar_spectrum: Optional[Spectrum] = None, **kwargs): """Sets the stellar incoming flux integrated in each wavenumber channel. .. important:: The normalization is such that the flux input is exactly flux_top_dw whatever the spectral range used. Parameters ---------- flux_top_dw: Bolometric Incoming flux (in W/m^2). Tstar: Stellar temperature (in K) used to compute the spectral distribution of incoming flux using a blackbody. stellar_spectrum: Spectrum of the star in units of per wavenumber. The specific units do not matter as the overall flux will be renormalized. """ if flux_top_dw is not None: self.flux_top_dw = flux_top_dw self.compute_flux_top_dw_nu = True if (Tstar is not None) and (stellar_spectrum is not None): print('Carefull, both Tstar and stellar_spectrum in set_incoming_stellar_flux') print('Tstar will not be used.') if Tstar is not None: self.Tstar = Tstar self.stellar_spectrum = None self.compute_flux_top_dw_nu = True if stellar_spectrum is not None: self.stellar_spectrum = stellar_spectrum self.Tstar = None self.compute_flux_top_dw_nu = True if (self.compute_flux_top_dw_nu) and (self.known_spectral_axis): if self.stellar_spectrum is not None: binned_spec = self.stellar_spectrum.bin_down_cp(self.wnedges) self.flux_top_dw_nu = binned_spec.value factor = self.flux_top_dw / (binned_spec.total) elif self.Tstar is not None: self.flux_top_dw_nu = Bnu_integral_num(self.wnedges, self.Tstar) factor = self.flux_top_dw / (np.sum(self.flux_top_dw_nu) * self.dwnedges) else: raise RuntimeError('Something went wrong, Tstar and stellar_spectrum cannot be both None') self.flux_top_dw_nu = self.flux_top_dw_nu * factor self.compute_flux_top_dw_nu = False self.number_computation_flux_top_dw_nu += 1
[docs] def set_internal_flux(self, internal_flux): """Sets internal flux from the subsurface in W/m^2 """ self.internal_flux = internal_flux
[docs] def set_surface_albedo(self, albedo_surf: Optional[float] = None, wn_albedo_cutoff: Optional[float] = None, **kwargs): """Sets the value of the mean surface albedo. Parameters ---------- albedo_surf: float Effective visible surface albedo. wn_albedo_cutoff : float wavenumber value in cm-1 dividing the visible range from the IR range, where the albedo goes from a given value 'albedo_surf' to 0. """ if albedo_surf is not None: self.albedo_surf = albedo_surf self.compute_albedo_surf_nu = True if wn_albedo_cutoff is not None: self.wn_albedo_cutoff = wn_albedo_cutoff self.compute_albedo_surf_nu = True if ((self.compute_albedo_surf_nu) and (self.known_spectral_axis)): self._setup_albedo_surf_nu() self.compute_albedo_surf_nu = False self.number_computation_albedo_surf_nu += 1
[docs] def _setup_albedo_surf_nu(self): """Compute the value of the mean surface albedo for each wavenumber in an array. If the albedo value is modified, this method needs to be called again. For now, only available with wavenumbers """ self.albedo_surf_nu = np.where(self.wns >= self.wn_albedo_cutoff, self.albedo_surf, 0.)
[docs] def set_rayleigh(self, rayleigh: bool = False): """Sets whether or not Rayleigh scattering is included.""" self.rayleigh = rayleigh
[docs] def spectral_integration(self, spectral_var): """Spectrally integrate an array, taking care of whether we are dealing with corr-k or xsec data. Parameters ---------- spectral_var: array, np.ndarray array to integrate Returns ------- var: array, np.ndarray array integrated over wavenumber (and g-space if relevant) """ return np.sum(self.g_integration(spectral_var) * self.dwnedges, axis=-1)
[docs] def g_integration(self, spectral_var): """Integrate an array along the g direction (only for corrk) Parameters ---------- spectral_var: array, np.ndarray array to integrate Returns ------- var: array, np.ndarray array integrated over g-space if relevant """ if self.Ng is None: var = spectral_var else: var = np.sum(spectral_var * self.k_database.weights, axis=-1) return var
[docs] def opacity(self, rayleigh = None, compute_all_opt_prop = False, wn_range = None, wl_range = None, **kwargs): """Computes the opacity of each of the radiative layers (m^2/molecule). Parameters ---------- rayleigh: bool If true, the rayleigh cross section is computed in self.kdata_scat and added to kdata(total extinction cross section) If None, the global attribute self.rayleigh is used. See :any:`gas_mix.Gas_mix.cross_section` for details. """ if rayleigh is None: local_rayleigh = self.rayleigh else: local_rayleigh = rayleigh self.kdata = self.gas_mix.cross_section(rayleigh=local_rayleigh, wn_range=wn_range, wl_range=wl_range, **kwargs) shape = self.kdata.shape if ((wn_range is not None) or (wl_range is not None)): self.compute_albedo_surf_nu = True self.compute_flux_top_dw_nu = True self.known_spectral_axis = False if self.aerosols.adatabase is not None: [kdata_aer, k_scat_aer, g_aer] = self.aerosols.optical_properties( compute_all_opt_prop=compute_all_opt_prop, **kwargs) if self.Ng is None: self.kdata += kdata_aer else: self.kdata += kdata_aer[:,:,None] if compute_all_opt_prop: if local_rayleigh: kdata_scat_tot = self.gas_mix.kdata_scat else: kdata_scat_tot = np.zeros(shape[0:2], dtype=float) if self.aerosols.adatabase is not None: kdata_scat_tot += k_scat_aer self.asym_param = np.where(kdata_scat_tot<=0., 0., k_scat_aer * g_aer / kdata_scat_tot) #the line below is for test. Should be removed #self.asym_param = np.zeros(shape[0:2], dtype=float) #self.asym_param = np.ones(shape[0:2], dtype=float) else: self.asym_param = np.zeros(shape[0:2], dtype=float) if self.Ng is None: self.single_scat_albedo = kdata_scat_tot / self.kdata else: self.single_scat_albedo = kdata_scat_tot[:,:,None] / self.kdata self.asym_param = self.asym_param[:,:,None] * np.ones(self.Ng) #JL21 the line above could be removed as asym param does not seem to change # with g point, but then the dimensions should be change in 2stream routines. self.single_scat_albedo=np.core.umath.minimum(self.single_scat_albedo,0.9999999999) #self.single_scat_albedo=np.core.umath.maximum(self.single_scat_albedo,0.1) self.Nw=self.gas_mix.Nw self.wns=self.gas_mix.wns self.wnedges=self.gas_mix.wnedges self.dwnedges=self.gas_mix.dwnedges self.known_spectral_axis = True
[docs] def source_function(self, integral=True, source=True): """Compute the blackbody source function (Pi*Bnu) for each layer of the atmosphere. Parameters ---------- integral: boolean, optional * If true, the black body is integrated within each wavenumber bin. * If not, only the central value is used. False is faster and should be ok for small bins, but True is the correct version. source: boolean, optional If False, the source function is put to 0 (for solar absorption calculations) """ if source: if integral: #JL2020 What is below is slightly faster for very large resolutions #piBatm=np.empty((self.Nlay,self.Nw)) #for ii in range(self.Nlay): # piBatm[ii]=PI*Bnu_integral_num(self.wnedges,self.tlay[ii])/dw #JL2020 What is below is much faster for moderate to low resolutions piBatm=PI*Bnu_integral_array(self.wnedges,self.tlay,self.Nw,self.Nlay) \ /self.dwnedges else: piBatm=PI*Bnu(self.wns[None,:],self.tlay[:,None]) else: piBatm=np.zeros((self.Nlay,self.Nw)) return piBatm
[docs] def setup_emission_caculation(self, mu_eff=0.5, rayleigh=None, integral=True, source=True, gas_vmr=None, Mgas=None, aer_reffs_densities=None, **kwargs): """Computes all necessary quantities for emission calculations (opacity, source, etc.) """ if gas_vmr is not None: self.set_gas(gas_vmr, Mgas = Mgas) if aer_reffs_densities is not None: self.aerosols.set_aer_reffs_densities(aer_reffs_densities=aer_reffs_densities) self.opacity(rayleigh = rayleigh, **kwargs) self.set_surface_albedo(**kwargs) self.set_incoming_stellar_flux(**kwargs) self.piBatm = self.source_function(integral=integral, source=source) self.compute_layer_col_density() if self.Ng is None: self.tau, self.dtau=rad_prop_xsec(self.dcol_density_rad, self.kdata, mu_eff) else: self.tau, self.dtau=rad_prop_corrk(self.dcol_density_rad, self.kdata, mu_eff) self.weights=self.k_database.weights
[docs] def emission_spectrum(self, integral=True, mu0=0.5, mu_quad_order=None, dtau_min=1.e-13, **kwargs): """Returns the emission flux at the top of the atmosphere (in W/m^2/cm^-1) Parameters ---------- integral: boolean, optional * If true, the black body is integrated within each wavenumber bin. * If not, only the central value is used. False is faster and should be ok for small bins, but True is the correct version. Other Parameters ---------------- mu0: float Cosine of the quadrature angle use to compute output flux mu_quad_order: int If an integer is given, the emission intensity is computed for a number of angles and integrated following a gauss legendre quadrature rule of order `mu_quad_order`. dtau_min: float If the optical depth in a layer is smaller than dtau_min, dtau_min is used in that layer instead. Important as too transparent layers can cause important numerical rounding errors. Returns ------- Spectrum object A spectrum with the Spectral flux at the top of the atmosphere (in W/m^2/cm^-1) """ if mu_quad_order is not None: # if we want quadrature, use the more general method. return self.emission_spectrum_quad(integral=integral, mu_quad_order=mu_quad_order, dtau_min=dtau_min, **kwargs) try: self.setup_emission_caculation(mu_eff=mu0, rayleigh = False, integral=integral, **kwargs) except TypeError: raise RuntimeError(""" Cannot use rayleigh option with emission_spectrum. If you meant to include scattering, you should use emission_spectrum_2stream. """) # self.tau and self.dtau include the 1/mu0 factor. expdtau=np.exp(-self.dtau) expdtauminone=np.where(self.dtau < dtau_min, -self.dtau, expdtau-1.) # careful: due to numerical limitations, # the limited development of Exp(-dtau)-1 needs to be used for small values of dtau exptau=np.exp(-self.tau) if self.Ng is None: timesBatmTop=(1.+expdtauminone/self.dtau)*exptau[:-1] timesBatmBottom=(-expdtau-expdtauminone/self.dtau)*exptau[:-1] timesBatmBottom[-1]+=exptau[-1] else: timesBatmTop=np.sum((1.+expdtauminone/self.dtau)*exptau[:-1]*self.weights,axis=-1) timesBatmBottom=np.sum((-expdtau-expdtauminone/self.dtau)*exptau[:-1] \ *self.weights,axis=-1) timesBatmBottom[-1]+=np.sum(exptau[-1]*self.weights,axis=-1) IpTop=np.sum(self.piBatm[:-1]*timesBatmTop+self.piBatm[1:]*timesBatmBottom,axis=0) return Spectrum(IpTop,self.wns,self.wnedges)
[docs] def emission_spectrum_quad(self, integral=True, mu_quad_order=3, dtau_min=1.e-13, **kwargs): """Returns the emission flux at the top of the atmosphere (in W/m^2/cm^-1) using gauss legendre qudrature of order `mu_quad_order` Parameters ---------- integral: boolean, optional * If true, the black body is integrated within each wavenumber bin. * If not, only the central value is used. False is faster and should be ok for small bins, but True is the correct version. dtau_min: float If the optical depth in a layer is smaller than dtau_min, dtau_min is used in that layer instead. Important as too transparent layers can cause important numerical rounding errors. Returns ------- Spectrum object A spectrum with the Spectral flux at the top of the atmosphere (in W/m^2/cm^-1) """ self.setup_emission_caculation(mu_eff=1., rayleigh = False, integral=integral, **kwargs) # angle effect dealt with later IpTop = np.zeros(self.kdata.shape[1]) mu_w, mu_a, _ = gauss_legendre(mu_quad_order) mu_w = mu_w * mu_a * 2. # takes care of the mu factor in last integral => int(mu I d mu) # Factor 2 takes care of the fact that the source function is pi*Batm # but we want 2*Pi*Batm for ii, mu0 in enumerate(mu_a): tau=self.tau/mu0 dtau=self.dtau/mu0 expdtau=np.exp(-dtau) expdtauminone=np.where(dtau<dtau_min,-dtau,expdtau-1.) exptau=np.exp(-tau) if self.Ng is None: timesBatmTop=(1.+expdtauminone/dtau)*exptau[:-1] timesBatmBottom=(-expdtau-expdtauminone/dtau)*exptau[:-1] timesBatmBottom[-1]+=exptau[-1] else: timesBatmTop=np.sum((1.+expdtauminone/dtau)*exptau[:-1] \ *self.weights,axis=-1) timesBatmBottom=np.sum((-expdtau-expdtauminone/dtau)*exptau[:-1] \ *self.weights,axis=-1) timesBatmBottom[-1]+=np.sum(exptau[-1]*self.weights,axis=-1) IpTop+=np.sum(self.piBatm[:-1]*timesBatmTop+self.piBatm[1:]*timesBatmBottom,axis=0) \ *mu_w[ii] return Spectrum(IpTop,self.wns,self.wnedges)
[docs] def emission_spectrum_2stream(self, integral=True, mu0=0.5, method='toon', dtau_min=1.e-10, flux_at_level=False, rayleigh = None, flux_top_dw=None, source=True, compute_kernel=False, **kwargs): """Returns the emission flux at the top of the atmosphere (in W/m^2/cm^-1) Parameters ---------- integral: boolean, optional * If True, the source function (black body) is integrated within each wavenumber bin. * If False, only the central value is used. False is faster and should be ok for small bins (e.g. used with `Xtable`), but True is the most accurate mode. rayleigh: bool Whether to account for rayleigh scattering or not. If None, the global attribute self.rayleigh is used. Other Parameters ---------------- mu0: float Cosine of the quadrature angle use to compute output flux dtau_min: float If the optical depth in a layer is smaller than dtau_min, dtau_min is used in that layer instead. Important as too transparent layers can cause important numerical rounding errors. flux_at_level: bool Whether the fluxes are computed at the levels (True) or in the middle of the layers (False). e.g. this needs to be True to be able to use the kernel with the evolution model. source: bool Whether to include the self emission of the gas in the computation. compute_kernel: bool Whether we want to recompute the kernel of the heating rates along with the fluxes. method: str What method to use to computed the 2 stream fluxes. 'toon' (default) uses Toon et al. (1989). 'lmdz' is based on the same equation, but the implementation is closer to the actual method used in the LMDZ GCM. This mode is not supported anymore and might be broken! Returns ------- Spectrum object A spectrum with the Spectral flux at the top of the atmosphere (in W/m^2/cm^-1) """ self.setup_emission_caculation(mu_eff=1., rayleigh = rayleigh, integral=integral, source=source, flux_top_dw=flux_top_dw, compute_all_opt_prop=True, **kwargs) # mu_eff=1. because the mu effect is taken into account in solve_2stream_nu # we must compute the vertical optical depth here. # JL21: shouldn't we remove flux_top_dw, it seems not to be used. self.single_scat_albedo=np.where(self.dtau<dtau_min,0.,self.single_scat_albedo) self.dtau=np.where(self.dtau<dtau_min,dtau_min,self.dtau) module_to_use=globals()[method] # globals()[method] converts the method string into a module name # if the module has been loaded if self.Ng is None: solve_2stream_nu=module_to_use.solve_2stream_nu_xsec else: solve_2stream_nu=module_to_use.solve_2stream_nu_corrk if flux_top_dw is not None: self.set_incoming_stellar_flux(flux=flux_top_dw, **kwargs) self.flux_up_nu, self.flux_down_nu, self.flux_net_nu = \ solve_2stream_nu(self.piBatm, self.dtau, self.single_scat_albedo, self.asym_param, self.flux_top_dw_nu, self.albedo_surf_nu, mu0 = mu0, flux_at_level=flux_at_level) if compute_kernel: self.compute_kernel(solve_2stream_nu, mu0=mu0, flux_at_level=flux_at_level, per_unit_mass=True, integral=True, **kwargs) if self.Ng is None: return Spectrum(self.flux_up_nu[0],self.wns,self.wnedges) else: return Spectrum(np.sum(self.flux_up_nu[0]*self.weights,axis=1),self.wns,self.wnedges)
[docs] def compute_kernel(self, solve_2stream_nu, epsilon=0.01, flux_at_level=False, mu0 = 0.5, per_unit_mass=True, integral=True, **kwargs): """Computes the Jacobian matrix d Heating[lay=i] / d T[lay=j] This method should not be called by the user directly. The recompute the kernel, call emission_spectrum_2stream with the option compute_kernel=True. After the computation, the kernel is stored in self.kernel and the temperature array at wich the kernel has been computed in self.tlay_kernel. Parameters ---------- solve_2stream_nu: function Name of the function that will be used to compute the fluxes. e.g.: two_stream_toon or two_stream_lmdz epsilon: float The temperature increment used to compute the derivative will be epsilon*self.tlay flux_at_level: bool Whether the fluxes are computed at the levels (True) or in the middle of the layers (False). e.g. this needs to be True to be able to use the kernel with the evolution model. mu0: float Cosine of the effective zenith angle used in the flux computations. per_unit_mass: bool Whether the heating rates will be normalized per unit of mass (i.e. the kernel values will have units of W/kg/K). If False, kernel in W/layer/K. integral: bool Whether the integral mode is used in flux computations. e.g. this needs to be True to be able to use the kernel with the evolution model. """ net=self.spectral_integration(self.flux_net_nu) self.kernel=np.empty((self.Nlay,self.Nlay)) tlay=self.tlay dT = epsilon*tlay self.tlay = tlay + dT newpiBatm = self.source_function(integral=integral) for ilay in range(self.Nlay): pibatm = np.copy(self.piBatm) pibatm[ilay] = newpiBatm[ilay] _, _, flux_net_tmp = \ solve_2stream_nu(pibatm, self.dtau, self.single_scat_albedo, self.asym_param, self.flux_top_dw_nu, self.albedo_surf_nu, mu0 = mu0, flux_at_level=flux_at_level) net_tmp = self.spectral_integration(flux_net_tmp) self.kernel[ilay]=(net-net_tmp)/dT[ilay] self.kernel[:,:-1]-=self.kernel[:,1:] self.tlay=tlay self.tlay_kernel=self.tlay if per_unit_mass: self.kernel*=self.inv_dmass
[docs] def flux_divergence(self, per_unit_mass = True, **kwargs): """Computes the divergence of the net flux in the layers (used to compute heating rates). :func:`emission_spectrum_2stream` needs to be ran first. Parameters ---------- per_unit_mass: bool If True, the heating rates are normalized by the mass of each layer (result in W/kg). Returns ------- H: array, np.ndarray Heating rate in each layer (Difference of the net fluxes). Positive means heating. The last value is the net flux impinging on the surface + the internal flux. net: array, np.ndarray Net fluxes at level surfaces """ if self.flux_net_nu is None: raise RuntimeError('should have ran emission_spectrum_2stream.') net = self.spectral_integration(self.flux_net_nu) H = -np.copy(net) H[:-1] -= H[1:] H[-1] += self.internal_flux if per_unit_mass: H *= self.inv_dmass return H, net
[docs] def heating_rate(self, compute_kernel=False, dTmax_use_kernel=None, **kwargs): """Computes the heating rates and net fluxes in the atmosphere. Parameters ---------- compute_kernel: bool If True, the kernel (jacobian of the heat rates) is recomputed dTmax_use_kernel: float Maximum temperature difference between the current temperature and the temperature of the last kernel computation before a new kernel is recomputed. Returns ------- H: array, np.ndarray Heating rate in each layer (Difference of the net fluxes). Positive means heating. The last value is the net flux impinging on the surface + the internal flux. net: array, np.ndarray Net fluxes at level surfaces """ if (not compute_kernel) and (dTmax_use_kernel is not None): dT=self.tlay-self.tlay_kernel if np.amax(np.abs(dT)) < dTmax_use_kernel: try: H = self.H_kernel + np.dot(dT,self.kernel) net = self.internal_flux - np.cumsum((H*self.dmass)[::-1])[::-1] except: raise RuntimeError("Kernel has not been precomputed") return H, net _ = self.emission_spectrum_2stream(flux_at_level=True, integral=True, compute_kernel=compute_kernel, **kwargs) H, net = self.flux_divergence(compute_kernel=compute_kernel, **kwargs) if compute_kernel: self.H_kernel = H self.tau_rads = 1./np.abs(self.kernel.diagonal()) self.tau_rad = np.amin(self.tau_rads) return H, net
[docs] def bolometric_fluxes_2band(self, flux_top_dw = None, **kwargs): """Computes the bolometric fluxes at levels and heating rates using `bolometric_fluxes`. However, the (up, down, net) fluxes are separated in two contributions: - the part emitted directly by the atmosphere (_emis). - the part due to the incoming stellar light (_stell), that can be used to compute the absorbed stellar radiation and the bond_albedo. We also provide the associated heating rates (H in W/kg) """ save_stellar_flux = np.copy(self.flux_top_dw_nu) self.flux_top_dw_nu = self.flux_top_dw_nu * 0. _ = self.emission_spectrum_2stream(flux_at_level = True, integral = True, **kwargs) Fup_emis, Fdw_emis, Fnet_emis, H_emis = self.bolometric_fluxes(**kwargs) self.flux_top_dw_nu = save_stellar_flux save_internal_flux = np.copy(self.internal_flux) _ = self.emission_spectrum_2stream(flux_at_level = True, integral = True, flux_top_dw = flux_top_dw, source = False, **kwargs) Fup_stel, Fdw_stel, Fnet_stel, H_stel = self.bolometric_fluxes(**kwargs) self.internal_flux = save_internal_flux return Fup_emis, Fdw_emis, Fnet_emis, H_emis, Fup_stel, Fdw_stel, Fnet_stel, H_stel
[docs] def spectral_fluxes_2band(self, **kwargs): """Computes the spectral fluxes at levels. The (up, down, net) fluxes are separated in two contributions: - the part emitted directly by the atmosphere (_emis). - the part due to the incoming stellar light (_stell), that can be used to compute the absorbed stellar radiation and the bond_albedo. """ save_stellar_flux = np.copy(self.flux_top_dw_nu) self.flux_top_dw_nu = self.flux_top_dw_nu * 0. _ = self.emission_spectrum_2stream(flux_at_level=True, integral=True, **kwargs) Fup_emis = self.g_integration(self.flux_up_nu) Fdw_emis = self.g_integration(self.flux_down_nu) Fnet_emis = self.g_integration(self.flux_net_nu) self.flux_top_dw_nu = save_stellar_flux _ = self.emission_spectrum_2stream(flux_at_level=True, integral=True, source=False, **kwargs) Fup_stel = self.g_integration(self.flux_up_nu) Fdw_stel = self.g_integration(self.flux_down_nu) Fnet_stel = self.g_integration(self.flux_net_nu) return Fup_emis, Fdw_emis, Fnet_emis, Fup_stel, Fdw_stel, Fnet_stel
[docs] def bolometric_fluxes(self, per_unit_mass = True, **kwargs): """Computes the bolometric fluxes at levels and the divergence of the net flux in the layers (used to compute heating rates). :func:`emission_spectrum_2stream` needs to be ran first. Parameters ---------- per_unit_mass: bool If True, the heating rates are normalized by the mass of each layer (result in W/kg). Returns ------- up: array, np.ndarray Upward fluxes at level surfaces dw: array, np.ndarray Downward fluxes at level surfaces net: array, np.ndarray Net fluxes at level surfaces H: array, np.ndarray Heating rate in each layer (Difference of the net fluxes). Positive means heating. The last value is the net flux impinging on the surface + the internal flux. """ H, net = self.flux_divergence(per_unit_mass = per_unit_mass) up=self.spectral_integration(self.flux_up_nu) dw=self.spectral_integration(self.flux_down_nu) return up, dw, net, H
[docs] def transmittance_profile(self, **kwargs): """Computes the transmittance profile of an atmosphere, i.e. Exp(-tau) for each layer of the model. Real work done in the numbafied function path_integral_corrk/xsec depending on the type of data. """ self.opacity(**kwargs) self.compute_tangent_path() self.compute_number_density() if self.Ng is not None: self.weights=self.k_database.weights transmittance=path_integral_corrk( \ self.Nlay-1,self.Nw,self.Ng,self.tangent_path,self.n_density,self.kdata,self.weights) else: transmittance=path_integral_xsec( \ self.Nlay-1,self.Nw,self.tangent_path,self.n_density,self.kdata) return transmittance
[docs] def transmission_spectrum(self, normalized=False, Rstar=None, **kwargs): r"""Computes the transmission spectrum of the atmosphere. In general (see options below), the code returns the transit depth: .. math:: \delta_\nu=(\pi R_p^2+\alpha_\nu)/(\pi R_{star}^2), where .. math:: \alpha_\nu=2 \pi \int_0^{z_{max}} (R_p+z)*(1-e^{-\tau_\nu(z)) d z. Parameters ---------- Rstar: float or astropy.unit object, optional Radius of the host star. If a float is specified, meters are assumed. Does not need to be given here if it has already been specified as an attribute of the :class:`Atm` object. If specified, the result is the transit depth: .. math:: \delta_\nu=(\pi R_p^2+\alpha_\nu)/(\pi R_{star}^2). normalized: boolean, optional Used only if self.Rstar and Rstar are None: * If True, the result is normalized to the planetary radius: .. math:: \delta_\nu=1+\frac{\alpha_\nu}{\pi R_p^2}. * If False, .. math:: \delta_\nu=\pi R_p^2+\alpha_\nu. Returns ------- array The transit spectrum (see above for normalization options). """ if Rstar is not None: self.set_Rstar(Rstar) transmittance=self.transmittance_profile(**kwargs) self.compute_area() res=Spectrum((np.dot(self.area,(1.-transmittance))),self.wns,self.wnedges) if self.Rstar is not None: return (res+(PI*self.Rp**2))/(PI*self.Rstar**2) elif normalized: return res/(PI*self.Rp**2)+1 else: return res+(PI*self.Rp**2)
def __repr__(self): """Method to output header """ output=super().__repr__() output+=""" k_database : {kdatab} cia_database : {cdatab}""".format(kdatab=self.k_database, cdatab=self.gas_mix.cia_database) if self.gas_mix._wn_range is not None: output+=' wn range : '+ self.gas_mix._wn_range +'\n' return output
[docs] def exp_minus_tau(self): """Sums Exp(-tau) over gauss points """ weights=self.k_database.weights return np.sum(np.exp(-self.tau[1:])*weights,axis=2)
[docs] def exp_minus_tau_g(self, g_index): """Sums Exp(-tau) over gauss point """ return np.exp(-self.tau[1:,:,g_index])
[docs] def blackbody(self, layer_idx=-1, integral=True): """Computes the surface black body flux (in W/m^2/cm^-1) for the temperature of layer `layer_idx`. Parameters ---------- layer_idx; int Index of layer used for the temperature. integral: boolean, optional * If true, the black body is integrated within each wavenumber bin. * If not, only the central value is used. False is faster and should be ok for small bins, but True is the correct version. Returns ------- Spectrum object Spectral flux in W/m^2/cm^-1 """ if not self.known_spectral_axis: self.opacity(integral = integral) if integral: piBatm=PI*Bnu_integral_num(self.wnedges,self.tlay[layer_idx])/self.dwnedges else: piBatm=PI*Bnu(self.wns[:],self.tlay[layer_idx]) return Spectrum(piBatm,self.wns,self.wnedges)
[docs] def surf_bb(self, **kwargs): """Computes the surface black body flux (in W/m^2/cm^-1). See :any:`blackbody` for options. Returns ------- Spectrum object Spectral flux of a bb at the surface (in W/m^2/cm^-1) """ return self.blackbody(layer_idx=-1, **kwargs)
[docs] def top_bb(self, **kwargs): """Computes the top of atmosphere black body flux (in W/m^2/cm^-1). See :any:`blackbody` for options. Returns ------- Spectrum object Spectral flux of a bb at the temperature at the top of atmosphere (in W/m^2/cm^-1) """ return self.blackbody(layer_idx=0, **kwargs)
[docs] def contribution_function(self) -> np.ndarray: r""" Compute the contribution function $Cf(P,\lambda) = B(T,\lambda) \frac{d e^\tau}{d \log P}$. $\tau$ and $\log P$ are taken at the mid-layers, the temperature needs to be taken at the level surfaces. For that, we use the computed temperature `t_opac[:-1]`. The result is not normalized to allow comparison. Returns ------- np.ndarray Contribution function [W/m^2/str/cm-1]. Shape: **(Nlay - 1, Nw)**. """ B = Bnu_integral_array(self.wnedges, self.t_opac, self.Nw, self.t_opac.shape[0]) / self.dwnedges dlogP = np.diff(self.logplay) detau = np.diff(self.g_integration(np.exp(-self.tau)), axis=0) return - ((B * detau).T / dlogP).T