Source code for exo_k.ktable_io

# -*- coding: utf-8 -*-
"""
@author: jeremy leconte
"""
import os
import array
import pickle
import h5py
import netCDF4 as nc
from astropy.io import fits
import numpy as np
import astropy.units as u
from .data_table import Data_table
from .util.interp import rm_molec, gauss_legendre
from .util.filenames import _read_array, _read_exorem_k_array
from .util.cst import nemesis_hitran_id_numbers
from .util.radiation import atmo_wavenumber_grid_N


[docs] class Ktable_io(Data_table): """A class to handle the input-output methods of the :class:`~exo_k.ktable.Ktable` class. """
[docs] def read_hdf5(self, filename=None, mol=None, wn_range=None, wl_range=None): """Initializes k coeff table and supporting data from an hdf5 file (compatible with Exomol format) Parameters ---------- file : str Name of the input hdf5 file """ if (filename is None or not filename.lower().endswith(('.hdf5', '.h5'))): raise RuntimeError("You should provide an input hdf5 file") with h5py.File(filename, 'r') as f: if 'mol_name' in f: self.mol=f['mol_name'][()] elif 'mol_name' in f.attrs: self.mol=f.attrs['mol_name'] else: if mol is not None: self.mol=mol else: self.mol=os.path.basename(filename).split(self._settings._delimiter)[0] if isinstance(self.mol, np.ndarray): self.mol=self.mol[0] if isinstance(self.mol, bytes): self.mol=self.mol.decode('UTF-8') if 'method' in f: self.sampling_method=f['method'][()][0] if isinstance(self.sampling_method, bytes): self.sampling_method=self.sampling_method.decode('UTF-8') if 'DOI' in f: self.DOI=f['DOI'][()][0] if isinstance(self.DOI, bytes): self.DOI=self.DOI.decode('UTF-8') self.wnedges=f['bin_edges'][...] if 'bin_centers' in f: self.wns=f['bin_centers'][...] else: self.wns=self.wnedges[:-1]+np.diff(self.wnedges)/2 iw_min, iw_max = self.select_spectral_range(wn_range, wl_range) if 'units' in f['bin_edges'].attrs: self.wn_unit=f['bin_edges'].attrs['units'] else: if 'units' in f['bin_centers'].attrs: self.wn_unit=f['bin_centers'].attrs['units'] self.kdata=f['kcoeff'][:,:, iw_min:iw_max] self.kdata_unit=f['kcoeff'].attrs['units'] self.tgrid=f['t'][...] self.pgrid=f['p'][...] self.logpgrid=np.log10(self.pgrid) self.p_unit=f['p'].attrs['units'] if 'weights' in f.keys(): self.weights=f['weights'][...] else: raise RuntimeError("""No weights keyword. This file is probably a cross section file.""") self.ggrid=f['samples'][...] self.gedges=np.insert(np.cumsum(self.weights),0,0.) self.logk=False self.Np,self.Nt,self.Nw,self.Ng=self.kdata.shape
[docs] def write_hdf5(self, filename, compression="gzip", compression_level=9, kdata_unit=None, p_unit=None, exomol_units=False): """Saves data in a hdf5 format Parameters ---------- filename: str Name of the file to be created and saved exomol_units: bool (optional) If True, data are converted back to cm^2 and bar units before being written. """ dt = h5py.string_dtype(encoding='utf-8') fullfilename=filename if not filename.lower().endswith(('.hdf5', '.h5')): fullfilename=filename+'.h5' folder = os.path.dirname(fullfilename) os.makedirs(folder, exist_ok=True) with h5py.File(fullfilename, 'w') as f: f.create_dataset("temperature_grid_type", (1,), data='regular', dtype=dt) f.create_dataset("key_iso_ll", (1,), data=self.isotopolog_id) f.create_dataset("mol_mass", (1,), data=self.molar_mass*1000.) f["mol_mass"].attrs["units"] = 'AMU' if exomol_units: kdata_unit='cm^2/molecule' p_unit='bar' if kdata_unit is not None: conv_factor=u.Unit(rm_molec(self.kdata_unit)).to(u.Unit(rm_molec(kdata_unit))) data_to_write=self.kdata*conv_factor f.create_dataset("kcoeff", data=data_to_write, compression=compression, compression_opts=compression_level) f["kcoeff"].attrs["units"] = kdata_unit else: f.create_dataset("kcoeff", data=self.kdata, compression=compression, compression_opts=compression_level) f["kcoeff"].attrs["units"] = self.kdata_unit f.create_dataset("method", (1,), data=self.sampling_method, dtype=dt) f.create_dataset("samples", data=self.ggrid, compression=compression, compression_opts=compression_level) f.create_dataset("weights", data=self.weights, compression=compression, compression_opts=compression_level) f.create_dataset("ngauss", data=self.Ng) f.create_dataset("bin_centers", data=self.wns, compression=compression, compression_opts=compression_level) f.create_dataset("bin_edges", data=self.wnedges, compression=compression, compression_opts=compression_level) # where most of the data is actually written self.write_hdf5_common(f, compression=compression, compression_level=compression_level, p_unit=p_unit)
[docs] def read_atmo(self, filename=None, mol=None, wn_range=None, wl_range=None, n_bands=None): """Initializes k coeff table and supporting data from an netcdf file (compatible with ATMO format) Parameters ---------- file : str Name of the input netcdf file """ if (filename is None or not filename.lower().endswith(('.ncdf', '.nc'))): raise RuntimeError("You should provide an input netcdf file") if n_bands is None: n_bands = int(os.path.basename(filename).split("_")[1]) with nc.Dataset(filename, 'r') as f: if mol is not None: self.mol=mol else: self.mol=os.path.basename(filename).split(self._settings._delimiter)[0] if isinstance(self.mol, np.ndarray): self.mol=self.mol[0] if isinstance(self.mol, bytes): self.mol=self.mol.decode('UTF-8') iw_min, iw_max = self.select_spectral_range(wn_range, wl_range) tgrid=f.variables['t_calc'][...] pgrid=f.variables['p_calc'][...] self.tgrid = np.sort(np.unique(tgrid)) self.pgrid = np.sort(np.unique(pgrid)) self.Nt=self.tgrid.size self.Np=self.pgrid.size self.logpgrid=np.log10(self.pgrid) self.p_unit=f.variables['p_calc'].units self.n_k=f.variables['n_k'][...] # nb of g points to use band=np.int_(f.variables['band'][...]-1) # bands to read from self.Nw = self.n_k.size # real Nw size self.wnedges = atmo_wavenumber_grid_N(n_bands) self.wns=(self.wnedges[1:]+self.wnedges[:-1])*0.5 self.wn_unit = 'cm^{-1}' Nw = self.wns.size # max Nw (will be read later) # 2D weights, Ng x Nw weights = f.variables['w_k'][...].T self.Ng=len(weights) self.weights = np.zeros((self.Ng, n_bands)) self.weights[:, band] = weights self.gedges = np.insert(np.cumsum(self.weights, axis=0), 0, 0, axis=0) self.ggrid=(self.gedges[1:]+self.gedges[:-1])*0.5 self.logk=False kdata=f.variables['kopt'][:,:, iw_min:iw_max] self.kdata_unit=f.variables['kopt'].units self.kdata = np.zeros((self.Np, self.Nt, n_bands, self.Ng)) for i, t in enumerate(tgrid): p = pgrid[i] i_t = self.tgrid.searchsorted(t) i_p = self.pgrid.searchsorted(p) self.kdata[i_p, i_t][band] = kdata[: ,i] #masse molaire de ta molécules nombre d'Avogadro. self.Np,self.Nt,self.Nw,self.Ng=self.kdata.shape
[docs] def write_atmo(self, path=None, note="t5e-3_uw1116", max_Ng=150): """Write a k coeff table in a netcdf file compatible with ATMO format. Parameters ---------- path : str Name of the output netcdf file or path in which to create file. If directory, then the filename will be constructed as "{path}/{mol}_{Nw}_{note}.nc" """ if path is None: raise NotADirectoryError(f"{path} not a directory. Please select a directory, or a filename.") elif not path.lower().endswith(('.ncdf', '.nc')): os.makedirs(path, exist_ok=True) filename = os.path.join(path, f"{self.mol}_{self.Nw}_{note}.nc") else: filename = path with nc.Dataset(filename, 'w') as f: # f.createDimension('nd_k_term', self.Ng) f.createDimension('nd_k_term', max_Ng) f.createDimension('pt_pair', self.Np * self.Nt) f.createDimension('band', self.Nw) band = f.createVariable('band', 'f8', ('band',),) band.title = "band number" n_k = f.createVariable('n_k', 'f8', ('band',),) n_k.title = "n_k number" p_calc = f.createVariable('p_calc', 'f8', ('pt_pair',),) p_calc.title = "pressure" p_calc.long_name = "pressure" p_calc.units = "Pa" t_calc = f.createVariable('t_calc', 'f8', ('pt_pair',),) t_calc.title = "temperature" t_calc.long_name = "temperature" t_calc.units = "K" w_k = f.createVariable('w_k', 'f8', ('band', 'nd_k_term'),) w_k.title = "weights" w_k.long_name = "weights" kopt = f.createVariable('kopt', 'f8', ('band', 'pt_pair', 'nd_k_term'),) kopt.title = "k-term" kopt.long_name = "k-term" kopt.units = "m2 kg-1" band[:] = np.arange(self.Nw)+1 n_k[:] = np.full((self.Nw, ), self.Ng) p_calc[:] = np.repeat(self.pgrid, self.Nt) t_calc[:] = np.tile(self.tgrid, self.Np) w_k[:] = np.zeros((self.Nw, max_Ng)) w_k[:, :self.Ng] = np.tile(self.weights, (self.Nw, 1)) kopt[:] = np.zeros((self.Nw, self.Np*self.Nt, max_Ng)) for i, p in enumerate(self.pgrid): kopt[:, i*self.Nt:(i+1)*self.Nt, :self.Ng] = self.kdata[i].transpose((1,0,2)) return
[docs] def read_LMDZ(self, path=None, res=None, band=None, mol=None): """Initializes k coeff table and supporting data from a .dat file in a gcm friendly format. Units are assumed to be cm^2 for kdata and mbar for pressure. Parameters ---------- path: str Name of the directory with the various input files res: str "IRxVI" where IR and VI are the numbers of bands in the infrared and visible of the k table to load. band: str "IR" or "VI" to specify which band to load. mol: str Name of the molecule to be saved in the Ktable object. """ if (path is None) or (res is None): \ raise TypeError("You should provide an input directory name and a resolution") self.filename=path if mol is not None: self.mol=mol else: self.mol=os.path.basename(self.filename).split(self._settings._delimiter)[0] self.weights=np.loadtxt(os.path.join(path,'g.dat'),skiprows=1)[:-1] # we remove the last point that is always zero. # in the gcm this last point is intended to take care of continuum self.Ng=self.weights.size self.gedges=np.insert(np.cumsum(self.weights),0,0.) self.ggrid=(self.gedges[1:]+self.gedges[:-1])*0.5 self.p_unit='mbar' self.logpgrid=np.loadtxt(os.path.join(path,'p.dat'),skiprows=1)*1. self.Np=self.logpgrid.size self.pgrid=10**self.logpgrid self.tgrid=np.loadtxt(os.path.join(path,'T.dat'),skiprows=1) self.Nt=self.tgrid.size if band is None: raw=np.loadtxt(os.path.join(path,res,'narrowbands.in'), skiprows=1, unpack=True) else: raw=np.loadtxt(os.path.join(path,res,'narrowbands_'+band+'.in'), \ skiprows=1, unpack=True) self.wnedges=np.append(raw[0],raw[1,-1]) self.wns=(self.wnedges[1:]+self.wnedges[:-1])*0.5 self.Nw=self.wns.size self.kdata_unit='cm^2/molecule' if band is None: file_to_load=os.path.join(path,res,'corrk_gcm.dat') else: file_to_load=os.path.join(path,res,'corrk_gcm_'+band+'.dat') tmp=np.loadtxt(file_to_load).flatten().reshape((self.Nt,self.Np,self.Nw,self.Ng+1),order='F') self.kdata=tmp[:,:,:,:-1].transpose((1,0,2,3)) # also removing the last g point which is equal to 0. self.logk=False return None
[docs] def write_LMDZ(self, path, band='IR', fmt='%22.15e', write_only_metadata=False): """Saves data in a LMDZ friendly format. The gcm requires p in mbar and kdata in cm^2/molec. The conversion is done automatically. Parameters ---------- path: str Name of the directory to be created and saved, the one that will contain all the necessary files band: str The band you are computing: 'IR' or 'VI' fmt: str Fortran format for the corrk file. """ try: os.makedirs(path, exist_ok=True) except FileExistsError: print('Directory was already there '+path) with open(os.path.join(path,'p.dat'), "w") as file: file.write(str(self.Np)+'\n') lp_to_write=self.logpgrid+np.log10(u.Unit(self.p_unit).to(u.Unit('mbar'))) for lp in lp_to_write: file.write(str(lp)+'\n') with open(os.path.join(path,'T.dat'), "w") as file: file.write(str(self.Nt)+'\n') for t in self.tgrid: file.write(str(t)+'\n') with open(os.path.join(path,'g.dat'), "w") as file: file.write(str(self.Ng+1)+'\n') for g in self.weights: file.write(str(g)+'\n') file.write(str(0.)+'\n') dirname=os.path.join(path,band+str(self.Nw)) try: os.mkdir(dirname) except FileExistsError: print('Directory was already there: '+dirname) with open(os.path.join(dirname,'narrowbands_'+band+'.in'), "w") as file: file.write(str(self.Nw)+'\n') for iw in range(self.Nw): file.write(str(self.wnedges[iw])+' '+str(self.wnedges[iw+1])+'\n') if not write_only_metadata: #file = open(dirname+'/corrk_gcm_IR.in', "w") data_to_write=self.kdata.transpose((1,0,2,3)).flatten(order='F') data_to_write=data_to_write*u.Unit(rm_molec(self.kdata_unit)).to(u.Unit('cm^2')) data_to_write=np.append(data_to_write, \ np.zeros(self.Np*self.Nt*self.Nw)).reshape((1,self.Np*self.Nt*self.Nw*(self.Ng+1))) np.savetxt(os.path.join(dirname,'corrk_gcm_'+band+'.dat'),data_to_write,fmt=fmt)
[docs] def read_nemesis(self, filename=None, mol=None): """Initializes k coeff table and supporting data from a Nemesis binary file (.kta) Parameters ---------- file: str Name of the input Nemesis binary file. mol: str, optional Name of the molecule. """ if (filename is None or not filename.lower().endswith('.kta')): raise RuntimeError("You should provide an input nemesis (.kta) file") self.Np, self.Nt, self.Nw, self.Ng, \ self.pgrid, self.tgrid, self.wns, \ self.ggrid, self.weights, self.kdata, \ self.mol, self.isotopolog_id = read_nemesis_binary(filename) if self.mol is None: if mol is not None: self.mol=mol else: self.mol=os.path.basename(self.filename).split(self._settings._delimiter)[0] self.logpgrid=np.log10(self.pgrid) self.wnedges=np.concatenate( \ ([self.wns[0]],(self.wns[:-1]+self.wns[1:])*0.5,[self.wns[-1]])) self.gedges=np.insert(np.cumsum(self.weights),0,0.) self.p_unit='bar' self.kdata_unit='cm^2/molecule'
[docs] def write_nemesis(self, filename): """Saves data in a nemesis format. Based on a routine provided by K. Chubb. Parameters ---------- filename: str Name of the file to be created and saved """ int_format = np.int32 float_format = np.float32 fullfilename=filename if not filename.lower().endswith(('.kta')): fullfilename=filename+'.kta' with open(fullfilename,'wb') as o: o.write(int_format(11+2*self.Ng+2+self.Np+self.Nt+self.Nw).tobytes()) #int for irec0 (5221) o.write(int_format(self.Nw).tobytes()) #int o.write(float_format(self.wls[-1]).tobytes()) #float for VMIN (0.30015) o.write(float_format(-1.).tobytes()) #float o.write(float_format(0.).tobytes()) #float for FWHM o.write(int_format(self.Np).tobytes()) o.write(int_format(self.Nt).tobytes()) o.write(int_format(self.Ng).tobytes()) try: mol_id=nemesis_hitran_id_numbers[self.mol] except: mol_id=0 o.write(int_format(mol_id).tobytes()) #IDGAS1 FROM HITRAN o.write(int_format(self.isotopolog_id).tobytes()) o.write(float_format(self.ggrid).tobytes()) o.write(float_format(self.weights).tobytes()) o.write(float_format(0.).tobytes()) #float for 0 o.write(float_format(0.).tobytes()) #float for 0 conv_factor=u.Unit(self.p_unit).to(u.Unit('bar')) o.write(float_format(self.pgrid).tobytes()) o.write(float_format(self.tgrid).tobytes()) o.write(float_format(self.wls[::-1]).tobytes()) data_to_write=self.kdata[:,:,::-1,:].transpose(2,0,1,3) conv_factor=u.Unit(rm_molec(self.kdata_unit)).to(u.Unit('cm^2'))*1.e20 data_to_write=data_to_write*conv_factor o.write(float_format(data_to_write).tobytes())
[docs] def read_exorem(self, filename, mol=None): """Reads data in an ExoREM .dat format Parameters ---------- filename: str Name of the input file. mol: str, optional Name of the molecule. """ if self.mol is None: if mol is not None: self.mol=mol else: self.mol=os.path.basename(self.filename).split(self._settings._delimiter)[0] with open(filename, 'r') as file: tmp = file.readline().split() self.Np=int(tmp[0]) self.Nt=int(tmp[1]) self.Nw=int(tmp[2]) self.Ng=int(tmp[-1]) #print(self.Np,self.Nt,self.Nw,self.Ng) self.pgrid=_read_array(file, self.Np, N_per_line=5, revert=True) self.logpgrid=np.log10(self.pgrid) self.p_unit='Pa' for _ in range(self.Np): self.tgrid=_read_array(file, self.Nt, N_per_line=5) self.ggrid=_read_array(file, self.Ng, N_per_line=5, revert=False) self.weights=_read_array(file, self.Ng, N_per_line=5, revert=False) self.gedges=np.concatenate(([0],np.cumsum(self.weights))) self.kdata=np.zeros((self.Np, self.Nt, self.Nw, self.Ng)) self.wns=np.zeros((self.Nw)) #read_new_line=True tmp = file.readline().split() for iW in range(self.Nw): self.wns[iW]=float(tmp[0]) #if iW=self.Nw-1: read_new_line=False for iP in range(self.Np): for iT in range(self.Nt): self.kdata[-iP-1,iT,iW]=_read_exorem_k_array(file, self.Ng) #if read_new_line: tmp = file.readline().split() tmp = file.readline().split() self.kdata_unit='cm^2/molec' self.wnedges=np.concatenate( \ ([self.wns[0]],(self.wns[:-1]+self.wns[1:])*0.5,[self.wns[-1]]))
[docs] def read_arcis(self, filename=None, mol=None): """Initializes k coeff table and supporting data from an ARCI fits file (.fits) Parameters ---------- file: str Name of the input fits file. mol: str, optional Name of the molecule. """ with fits.open(filename) as f: self.kdata=f[0].data[:,:,:,::-1] #reverse spectral axis self.kdata=np.transpose(self.kdata, axes=(0,1,3,2)) self.kdata_unit='cm^2/molecule' self.Np, self.Nt, self.Nw, self.Ng = self.kdata.shape self.tgrid=f[1].data self.pgrid=f[2].data self.logpgrid=np.log10(self.pgrid) self.p_unit='bar' self.wns=1./f[3].data[::-1] #data given in wavelength in cm self.wn_unit='cm^-1' wns_max=1./f[0].header['L_MIN'] wns_min=1./f[0].header['L_MAX'] self.wnedges=np.concatenate( \ ([wns_min],(self.wns[:-1]+self.wns[1:])*0.5,[wns_max])) self.weights,self.ggrid,self.gedges=gauss_legendre(self.Ng) if mol is not None: self.mol=mol else: self.mol=os.path.basename(filename).split(self._settings._delimiter)[0]
[docs] def write_arcis(self, filename): """Saves data in an ARCIS fits format. Parameters ---------- filename: str Name of the file to be created and saved """ hdr = fits.Header() p_conv_fac=u.Unit(self.p_unit).to(u.Unit('bar')) hdr['TMIN'] = self.tgrid[0] hdr['TMAX'] = self.tgrid[-1] hdr['PMIN'] = self.pgrid[0]*p_conv_fac hdr['PMAX'] = self.pgrid[-1]*p_conv_fac hdr['L_MIN'] = 1./self.wns[-1] hdr['L_MAX'] = 1./self.wns[0] hdr['NT'] = self.Nt hdr['NP'] = self.Np hdr['NLAM'] = self.Nw hdr['NG'] = self.Ng data_to_write=self.kdata[:,:,::-1,:].transpose(0,1,3,2) conv_factor=u.Unit(rm_molec(self.kdata_unit)).to(u.Unit('cm^2')) hdu0=fits.PrimaryHDU(data_to_write*conv_factor, header=hdr) hdu1=fits.ImageHDU(self.tgrid) hdu2=fits.ImageHDU(self.pgrid*p_conv_fac) hdu3=fits.ImageHDU(1./self.wns[::-1]) hdul = fits.HDUList([hdu0, hdu1, hdu2, hdu3]) fullfilename=filename if not filename.lower().endswith(('.fits')): fullfilename=filename+'.fits' hdul.writeto(fullfilename, overwrite=True)
[docs] def read_pickle(self, filename=None): """Initializes k coeff table and supporting data from an Exomol pickle file Parameters ---------- filename: str Name of the input pickle file mol: str, optional Force the name of the molecule """ if filename is None: raise RuntimeError("You should provide an input pickle filename") with open(filename,'rb') as pickle_file: raw=pickle.load(pickle_file, encoding='latin1') self.mol=raw['name'] if self.mol=='H2OP': self.mol='H2O' self.pgrid=raw['p'] self.logpgrid=np.log10(self.pgrid) self.tgrid=raw['t'] self.wns=raw['bin_centers'] self.wnedges=raw['bin_edges'] if 'weights' in raw.keys(): self.weights=raw['weights'] else: raise RuntimeError('No weights keyword. This file is probably a cross section file.') self.ggrid=raw['samples'] self.gedges=np.insert(np.cumsum(self.weights),0,0.) self.kdata=raw['kcoeff'] if 'p_unit' in raw.keys(): self.p_unit=raw['p_unit'] else: self.p_unit='bar' if 'kdata_unit' in raw.keys(): self.kdata_unit=raw['kdata_unit'] else: self.kdata_unit='cm^2/molec' if 'wn_unit' in raw.keys(): self.wn_unit=raw['wn_unit'] self.Np,self.Nt,self.Nw,self.Ng=self.kdata.shape
[docs] def write_pickle(self, filename): """Saves data in a pickle format Parameters ---------- filename: str Name of the file to be created and saved """ fullfilename=filename if not filename.lower().endswith('.pickle'): fullfilename=filename+'.pickle' with open(fullfilename,'wb') as pickle_file: dictout={'name':self.mol, 'p':self.pgrid, 'p_unit':self.p_unit, 't':self.tgrid, 'bin_centers':self.wns, 'bin_edges':self.wnedges, 'wn_unit':self.wn_unit, 'weights':self.weights, 'samples':self.ggrid, 'kcoeff':self.kdata, 'kdata_unit':self.kdata_unit} #print(dictout) pickle.dump(dictout,pickle_file,protocol=-1)
[docs] def spectrum_to_plot(self, p=1.e-5, t=200., x=1., g=None): """Dummy function to be defined in inheriting classes """ raise NotImplementedError()
[docs] def read_nemesis_binary(filename): """reads a nemesis binary file. """ with open(filename, mode='rb') as f: int_array = array.array('i') float_array = array.array('f') int_array.fromfile(f, 2) irec0, Nw=int_array[-2:] float_array.fromfile(f, 3) wl_min, dwl, FWHM = float_array[-3:] int_array.fromfile(f, 5) Np, Nt, Ng, mol_id, isotopolog_id = int_array[-5:] try: mol_name=list(nemesis_hitran_id_numbers.keys())[ \ list(nemesis_hitran_id_numbers.values()).index(mol_id)] except: mol_name=None float_array.fromfile(f, Ng) ggrid = np.array(float_array[-Ng:]) float_array.fromfile(f, Ng) weights = np.array(float_array[-Ng:]) float_array.fromfile(f, 2) float_array.fromfile(f, Np) pgrid = np.array(float_array[-Np:]) float_array.fromfile(f, Nt) tgrid = np.array(float_array[-Nt:]) ntot=Nw*Np*Nt*Ng if dwl>=0.: #regular grid wls=wl_min+np.arange(Nw)*dwl else: float_array.fromfile(f, Nw) wls = np.array(float_array[-Nw:]) wns=10000./wls[::-1] with open(filename, mode='rb') as f:# restart to start reading kdata at record number irec0 kdata=array.array('f') kdata.fromfile(f, irec0-1+ntot) kdata=np.reshape(kdata[-ntot:],(Nw,Np,Nt,Ng))[::-1]*1.e-20 kdata=kdata.transpose(1,2,0,3) return Np, Nt, Nw, Ng, pgrid, tgrid, wns, ggrid, weights, \ kdata, mol_name, isotopolog_id