Source code for exo_k.ktable5d

# -*- coding: utf-8 -*-
"""
@author: jeremy leconte
"""
from math import log10
import os
import h5py
import numpy as np
import astropy.units as u
from scipy.interpolate import RegularGridInterpolator
from .data_table import Data_table
from .util.interp import rm_molec, rebin_ind_weights, \
        gauss_legendre, split_gauss_legendre, spectrum_to_kdist, \
        is_sorted, bin_down_corrk_numba, g_sample_5d
from .util.cst import KBOLTZ
from .hires_spectrum import Hires_spectrum
from .util.filenames import create_fname_grid_Kspectrum_LMDZ, select_kwargs


[docs] class Ktable5d(Data_table): """A class that handles tables of k-coefficients with a variable gas. Based on the Data_table class that handles basic operations common to Ktable and Xtable. This class is specifically designed to deal with LMDZ type ktable where there is a variable gas. """ def __init__(self, *filename_filters, filename=None, path=None, p_unit='unspecified', file_p_unit='unspecified', kdata_unit='unspecified', file_kdata_unit='unspecified', remove_zeros=False, search_path=None, mol=None, **kwargs): """Initializes k coeff table with variable gas and supporting data from various sources (see below by order of precedence) Parameters ---------- filename: str (optional) Relative or absolute name of the file to be loaded. path: str If none of the above is specifed, path can point to a directory with a LMDZ type k coeff table. In this case, see read_LMDZ for the keywords to specify. If there is no input, just creates an empty object to be filled later See :class:`~exo_k.ktable.Ktable` __init__ mehthod for documentation on `p_unit`, `file_p_unit`, `kdata_unit`, `file_kdata_unit`, `remove_zeros`, `search_path`, and `mol` arguments. """ super().__init__() if filename is not None: self.filename=filename elif filename_filters or (mol is not None and path is None): # a none empty sequence returns a True in a conditional statement self.filename=self._settings.list_files(*filename_filters, molecule = mol, only_one=True, search_path=search_path, path_type='ktable')[0] if self.filename is not None: if self.filename.lower().endswith(('.hdf5', '.h5')): self.read_hdf5(filename=self.filename, mol=mol) else: raise NotImplementedError( \ 'Requested format not recognized. Should end with .hdf5 or .h5') elif path is not None: self.read_LMDZ(path=path, mol=mol, **kwargs) else: #if there is no input file, just create an empty object self.wnedges=None self.weights=None self.ggrid=None self.gedges=None self.xgrid=None self._finterp_kdata=None super().finalize_init(p_unit=p_unit, file_p_unit=file_p_unit, kdata_unit=kdata_unit, file_kdata_unit=file_kdata_unit, remove_zeros=remove_zeros) if self.kdata is not None: self.setup_interpolation()
[docs] def read_hdf5(self, filename=None, mol=None, wn_range=None, wl_range=None): """Initializes k coeff table and supporting data from an Exomol hdf5 file Parameters ---------- filename : str Name of the input hdf5 file """ if (filename is None or not filename.lower().endswith(('.hdf5', '.h5'))): raise RuntimeError("You should provide an input hdf5 file") with h5py.File(filename, 'r') as f: if 'mol_name' in f: self.mol=f['mol_name'][()] elif 'mol_name' in f.attrs: self.mol=f.attrs['mol_name'] else: if mol is not None: self.mol=mol else: self.mol=os.path.basename(filename).split(self._settings._delimiter)[0] if isinstance(self.mol, np.ndarray): self.mol=self.mol[0] if isinstance(self.mol, bytes): self.mol=self.mol.decode('UTF-8') if 'method' in f: self.sampling_method=f['method'][()][0] if isinstance(self.sampling_method, bytes): self.sampling_method=self.sampling_method.decode('UTF-8') if 'DOI' in f: self.DOI=f['DOI'][()][0] if isinstance(self.DOI, bytes): self.DOI=self.DOI.decode('UTF-8') self.wns=f['bin_centers'][...] self.wnedges=f['bin_edges'][...] iw_min, iw_max = self.select_spectral_range(wn_range, wl_range) if 'units' in f['bin_edges'].attrs: self.wn_unit=f['bin_edges'].attrs['units'] else: if 'units' in f['bin_centers'].attrs: self.wn_unit=f['bin_centers'].attrs['units'] self.kdata=f['kcoeff'][:,:, iw_min:iw_max] self.kdata_unit=f['kcoeff'].attrs['units'] self.tgrid=f['t'][...] self.pgrid=f['p'][...] self.logpgrid=np.log10(self.pgrid) self.p_unit=f['p'].attrs['units'] self.xgrid=f['x'][...] if 'weights' in f.keys(): self.weights=f['weights'][...] else: raise RuntimeError("""No weights keyword. This file is probably a cross section file.""") self.ggrid=f['samples'][...] self.gedges=np.insert(np.cumsum(self.weights),0,0.) self.logk=False f.close() self.Np,self.Nt,self.Nx,self.Nw,self.Ng=self.kdata.shape
[docs] def write_hdf5(self, filename, compression="gzip", compression_level=9, kdata_unit=None, p_unit=None): """Saves data in a hdf5 format Parameters ---------- filename: str Name of the file to be created and saved """ dt = h5py.string_dtype(encoding='utf-8') fullfilename=filename if not filename.lower().endswith(('.hdf5', '.h5')): fullfilename=filename+'.h5' with h5py.File(fullfilename, 'w') as f: f.create_dataset("x", data=self.xgrid, compression=compression, compression_opts=compression_level) f["x"].attrs["units"] = 'dimensionless' if kdata_unit is not None: conv_factor=u.Unit(rm_molec(self.kdata_unit)).to(u.Unit(rm_molec(kdata_unit))) data_to_write=self.kdata*conv_factor f.create_dataset("kcoeff", data=data_to_write, compression=compression, compression_opts=compression_level) f["kcoeff"].attrs["units"] = kdata_unit else: f.create_dataset("kcoeff", data=self.kdata, compression=compression, compression_opts=compression_level) f["kcoeff"].attrs["units"] = self.kdata_unit f.create_dataset("method", (1,), data=self.sampling_method, dtype=dt) f.create_dataset("samples", data=self.ggrid, compression=compression, compression_opts=compression_level) f.create_dataset("weights", data=self.weights, compression=compression, compression_opts=compression_level) f.create_dataset("ngauss", data=self.Ng) f.create_dataset("bin_centers", data=self.wns, compression=compression, compression_opts=compression_level) f.create_dataset("bin_edges", data=self.wnedges, compression=compression, compression_opts=compression_level) # where most of the data is actually written self.write_hdf5_common(f, compression=compression, compression_level=compression_level, p_unit=p_unit)
[docs] def read_LMDZ(self, path=None, res=None, band=None, mol=None): """Initializes k coeff table and supporting data from a .dat file in a gcm friendly format. Units are assumed to be cm^2 for kdata and mbar for pressure. Parameters ---------- path: str Name of the directory with the various input files res: str "IRxVI" where IR and VI are the numbers of bands in the infrared and visible of the k table to load. band: str "IR" or "VI" to specify which band to load. """ if (path is None) or (res is None): \ raise TypeError("You should provide an input directory name and a resolution") self.filename=path self.weights=np.loadtxt(os.path.join(path,'g.dat'),skiprows=1)[:-1] # we remove the last point that is always zero. # in the gcm this last point is intended to take care of continuum self.Ng=self.weights.size self.gedges=np.insert(np.cumsum(self.weights),0,0.) self.ggrid=(self.gedges[1:]+self.gedges[:-1])*0.5 self.p_unit='mbar' self.logpgrid=np.loadtxt(os.path.join(path,'p.dat'),skiprows=1)*1. self.Np=self.logpgrid.size self.pgrid=10**self.logpgrid self.tgrid=np.loadtxt(os.path.join(path,'T.dat'),skiprows=1) self.Nt=self.tgrid.size _, self.mol, self.Nx, self.xgrid = read_Qdat(os.path.join(path,'Q.dat')) if mol is not None: self.mol=mol if band is None: raw=np.loadtxt(os.path.join(path,res,'narrowbands.in'), skiprows=1, unpack=True) else: raw=np.loadtxt(os.path.join(path,res,'narrowbands_'+band+'.in'), \ skiprows=1, unpack=True) self.wnedges=np.append(raw[0],raw[1,-1]) self.wns=(self.wnedges[1:]+self.wnedges[:-1])*0.5 self.Nw=self.wns.size self.kdata_unit='cm^2/molecule' if band is None: file_to_load=os.path.join(path,res,'corrk_gcm.dat') else: file_to_load=os.path.join(path,res,'corrk_gcm_'+band+'.dat') tmp=np.loadtxt(file_to_load) \ .reshape((self.Nt,self.Np,self.Nx,self.Nw,self.Ng+1),order='F') self.kdata=tmp[:,:,:,:,:-1].transpose((1,0,2,3,4)) # also removing the last g point which is equal to 0. self.logk=False return None
[docs] def write_LMDZ(self, path, band='IR', fmt='%22.15e', write_only_metadata=False): """Saves data in a LMDZ friendly format. The gcm requires p in mbar and kdata in cm^2/molec. The conversion is done automatically. Parameters ---------- path: str Name of the directory to be created and saved, the one that will contain all the necessary files band: str The band you are computing: 'IR' or 'VI' fmt: str Fortran format for the corrk file. write_only_metadata: bool, optional If `True`, only supporting files are written (T.dat, p.dat, etc.) """ try: os.mkdir(path) except FileExistsError: print('Directory was already there: '+path) with open(os.path.join(path,'p.dat'), "w") as file: file.write(str(self.Np)+'\n') lp_to_write=self.logpgrid+np.log10(u.Unit(self.p_unit).to(u.Unit('mbar'))) for lp in lp_to_write: file.write(str(lp)+'\n') with open(os.path.join(path,'T.dat'), "w") as file: file.write(str(self.Nt)+'\n') for t in self.tgrid: file.write(str(t)+'\n') with open(os.path.join(path,'g.dat'), "w") as file: file.write(str(self.Ng+1)+'\n') for g in self.weights: file.write(str(g)+'\n') file.write(str(0.)+'\n') dirname=os.path.join(path,band+str(self.Nw)) try: os.mkdir(dirname) except FileExistsError: print('Directory was already there: '+dirname) with open(os.path.join(dirname,'narrowbands_'+band+'.in'), "w") as file: file.write(str(self.Nw)+'\n') for iw in range(self.Nw): file.write(str(self.wnedges[iw])+' '+str(self.wnedges[iw+1])+'\n') if not write_only_metadata: #file = open(dirname+'/corrk_gcm_IR.in', "w") data_to_write=self.kdata.transpose((1,0,2,3,4)).flatten(order='F') data_to_write=data_to_write*u.Unit(rm_molec(self.kdata_unit)).to(u.Unit('cm^2')) data_to_write=np.append(data_to_write, \ np.zeros(self.Np*self.Nt*self.Nx*self.Nw)) \ .reshape((1,self.Np*self.Nt*self.Nx*self.Nw*(self.Ng+1))) np.savetxt(os.path.join(dirname,'corrk_gcm_'+band+'.dat'),data_to_write,fmt=fmt)
[docs] def hires_to_ktable(self, path=None, filename_grid=None, logpgrid=None, tgrid=None, xgrid=None, wnedges=None, quad='legendre', order=20, g_split=0.9, weights=None, ggrid=None, mid_dw=True, write=0, mol=None, grid_p_unit='Pa', p_unit='unspecified', kdata_unit='unspecified', file_kdata_unit='unspecified', remove_zeros=False, **kwargs): """Computes a k coeff table from :class:`~exo_k.util.hires_spectrum.Hires_spectrum` objects. see :func:`exo_k.ktable.Ktable.hires_to_ktable` method for details on the arguments and options. Other Parameters ---------------- xgrid: array, np.ndarray Input grid in vmr of the variable gas. Needed for a Ktable5d. .. warning:: By default, log pressures are specified in Pa in logpgrid!!! If you want to use another unit, do not forget to specify it with the grid_p_unit keyword. """ if path is None: raise TypeError("You should provide an input hires_spectrum directory") if wnedges is None: raise TypeError("You should provide an input wavenumber array") self.filename=path if mol is not None: self.mol=mol else: self.mol=os.path.basename(self.filename).split(self._settings._delimiter)[0] if weights is not None: self.weights=weights self.gedges=np.concatenate(([0],np.cumsum(self.weights))) if ggrid is not None: self.ggrid=np.array(ggrid) else: self.ggrid=(self.gedges[1:]+self.gedges[:-1])*0.5 self.sampling_method='custom' else: if quad=='legendre': self.weights,self.ggrid,self.gedges=gauss_legendre(order) elif quad=='split-legendre': self.weights,self.ggrid,self.gedges=split_gauss_legendre(order, g_split) else: raise NotImplementedError("Type of quadrature (quad keyword) not known.") self.sampling_method=quad self.Ng=self.weights.size conversion_factor=u.Unit(grid_p_unit).to(u.Unit('Pa')) self.logpgrid=np.array(logpgrid, dtype=float)+np.log10(conversion_factor) self.pgrid=10**self.logpgrid #in Pa self.p_unit='Pa' self.Np=self.logpgrid.size if write >= 3 : print(self.Np,self.pgrid) self.tgrid=np.array(tgrid) self.Nt=self.tgrid.size if write >= 3 : print(self.Nt,self.tgrid) self.xgrid=np.array(xgrid) self.Nx=self.xgrid.size if write >= 3 : print(self.Nx,self.xgrid) self.wnedges=np.array(wnedges) if self.wnedges.size<2: raise TypeError('wnedges should at least have two values') self.wns=(self.wnedges[1:]+self.wnedges[:-1])*0.5 self.Nw=self.wns.size self.kdata=np.zeros(self.shape) if filename_grid is None: filename_grid=create_fname_grid_Kspectrum_LMDZ(self.Np, self.Nt, **select_kwargs(kwargs,['suffix','nb_digit'])) else: filename_grid=np.array(filename_grid) for iP in range(self.Np): for iT in range(self.Nt): for iX in range(self.Nx): filename=filename_grid[iP,iT,iX] fname=os.path.join(path,filename) if write >= 3 : print(fname) spec_hr=Hires_spectrum(fname, file_kdata_unit=file_kdata_unit, **select_kwargs(kwargs,['skiprows','wn_column','mult_factor', 'kdata_column','data_type','binary','mass_amu'])) # for later conversion, the real kdata_unit is in spec_hr.kdata_unit self.kdata_unit=spec_hr.kdata_unit was_xsec=(spec_hr.data_type=='xsec') wn_hr=spec_hr.wns k_hr=spec_hr.kdata if mid_dw: dwn_hr=(wn_hr[2:]-wn_hr[:-2])*0.5 wn_hr=wn_hr[1:-1] k_hr=k_hr[1:-1] else: dwn_hr=(wn_hr[1:]-wn_hr[:-1]) wn_hr=wn_hr[:-1] k_hr=k_hr[:-1] self.kdata[iP,iT,iX]=spectrum_to_kdist(k_hr,wn_hr,dwn_hr,self.wnedges,self.ggrid) if not was_xsec: self.kdata[iP,iT,iX]=self.kdata[iP,iT,iX]*KBOLTZ*self.tgrid[iT]/self.pgrid[iP] if not was_xsec: self.kdata=self.kdata*u.Unit(self.kdata_unit).to(u.Unit('m^-1')) self.kdata_unit='m^2/molecule' # Accounts for the conversion of the abs_coeff to m^-1, so we know that # self.kdata is now in m^2/molecule. Can now convert to the desired unit. if self._settings._convert_to_mks and kdata_unit == 'unspecified': kdata_unit='m^2/molecule' self.convert_kdata_unit(kdata_unit=kdata_unit) # converts from self.kdata_unit wich is either: # - 'm^2/molecule' data_type was 'abs_coeff' # - The units after Hires_spectrum (which have already taken # file_kdata_unit into account) # to the desired unit. self.convert_p_unit(p_unit=p_unit) if remove_zeros : self.remove_zeros(deltalog_min_value=10.) self.setup_interpolation()
[docs] def setup_interpolation(self, log_interp=None): """Creates interpolating functions to be called later on. and loads it as attribute (inplace). """ if log_interp is None: log_interp=self._settings._log_interp self._local_log_interp=log_interp if self._local_log_interp: self._finterp_kdata=RegularGridInterpolator( \ (self.logpgrid,self.tgrid,np.log(self.xgrid)), np.log(self.kdata), \ bounds_error=True) else: self._finterp_kdata=RegularGridInterpolator( \ (self.logpgrid, self.tgrid, self.xgrid), self.kdata, \ bounds_error=True)
[docs] def set_kdata(self, new_kdata): """Changes kdata (inplace). this is preferred to directly accessing kdata because one could forget to run setup_interpolation(). Parameters ---------- new_kdata: array, np.ndarray New array of kdata. """ super().set_kdata(new_kdata) self.setup_interpolation()
[docs] def interpolate_kdata(self, logp_array=None, t_array=None, x_array= None, log_interp=None, logp_interp=True, wngrid_limit=None, **kwargs): """interpolate_kdata interpolates the kdata at on a given temperature and log pressure profile. Parameters ---------- logp_array: Array log 10 pressure array to interpolate to t_array: Array, same size a logp_array Temperature array to interpolate to x_array: Array, same size a logp_array vmr of variable gas array to interpolate to If floats are given, they are interpreted as arrays of size 1. wngrid_limit: list or array, optional if an array is given, interpolates only within this array log_interp: bool, dummy Dummy variable to be consistent with interpolate_kdata in data_table. Whether the interpolation is linear in kdata or in log(kdata) is actually controlled by self._settings._log_interp but only when the ktable is loaded. If you change that after the loading, you should rerun setup_interpolation(). Returns ------- array of shape (logp_array.size, self.Nw , self.Ng) The interpolated kdata. """ #clipping data if not logp_interp: raise RuntimeError('Linear p interpolation not yet supported for Ktable5d.') if log_interp != self._local_log_interp: self.setup_interpolation(log_interp=log_interp) logp_array=np.clip(logp_array, self.logpgrid[0], self.logpgrid[-1]) t_array=np.clip(t_array, self.tgrid[0], self.tgrid[-1]) x_array=np.clip(x_array, self.xgrid[0], self.xgrid[-1]) if wngrid_limit is None: wngrid_filter = slice(None) else: wngrid_limit=np.array(wngrid_limit) wngrid_filter = np.where((self.wnedges > wngrid_limit.min()) & ( self.wnedges <= wngrid_limit.max()))[0][:-1] if self._local_log_interp: coord_to_interp=np.array([logp_array,t_array,np.log(x_array)]).transpose() tmp_res=self._finterp_kdata(coord_to_interp) return np.exp(tmp_res[:,wngrid_filter]) else: coord_to_interp=np.array([logp_array,t_array,x_array]).transpose() tmp_res=self._finterp_kdata(coord_to_interp) return tmp_res[:,wngrid_filter]
[docs] def remap_logPT(self, logp_array=None, t_array=None, x_array= None): """remap_logPT re-interpolates the kdata on a new temprature and log pressure grid (inplace). If an `x_array` is specified, the interpolation occurs along the vmr axis as well. Parameters ---------- logp_array: Array log 10 pressure array to interpolate to t_array: Array temperature array to interpolate to x_array: Array vmr of variable gas array to interpolate to .. warning:: Whether the interpolation is linear in kdata or in log(kdata) is controlled by self._settings._log_interp but only when the ktable is loaded. If you change that after the loading, you should rerun setup_interpolation(). """ #clipping data logp_array_tmp=np.clip(logp_array, self.logpgrid[0], self.logpgrid[-1]) t_array_tmp=np.clip(t_array, self.tgrid[0], self.tgrid[-1]) if x_array is None: x_array_tmp=self.xgrid #it is a bit silly to interpolate on x anyway, even when the user # only wants to remap on P and T, but it is # way simpler to write! else: x_array_tmp=np.clip(x_array, self.xgrid[0], self.xgrid[-1]) if self._local_log_interp: coord=np.array(np.meshgrid( logp_array_tmp, t_array_tmp, np.log(x_array_tmp))).transpose((2,1,3,0)) tmp_res=np.exp(self._finterp_kdata(coord)) else: coord=np.array(np.meshgrid( logp_array_tmp, t_array_tmp, x_array_tmp)).transpose((2,1,3,0)) tmp_res=self._finterp_kdata(coord) self.logpgrid= logp_array self.pgrid = 10**self.logpgrid self.Np = logp_array.size self.tgrid = t_array self.Nt = t_array.size if x_array is not None: self.xgrid = x_array self.Nx = x_array.size self.set_kdata(tmp_res)
# self.setup_interpolation()
[docs] def copy(self,cp_kdata=True): """Creates a new instance of :class:`Ktable5d` object and (deep) copies data into it Parameters ---------- cp_kdata: bool, optional If false, the kdata table is not copied and only the structure and metadata are. Returns ------- :class:`Ktable` A new :class:`Ktable5d` instance with the same structure as self. """ res=Ktable5d() res.copy_attr(self,cp_kdata=cp_kdata) res._local_log_interp=self._local_log_interp res.xgrid = np.copy(self.xgrid) res.weights = np.copy(self.weights) res.ggrid = np.copy(self.ggrid) res.gedges = np.copy(self.gedges) if res.kdata is not None: res.setup_interpolation() return res
[docs] def gindex(self, g): """Finds the index corresponding to the given g """ return min(np.searchsorted(self.ggrid,g),self.Ng-1)
[docs] def xindex(self, x): """Finds the index corresponding to the given x """ return min(np.searchsorted(self.xgrid,x),self.Nx-1)
[docs] def spectrum_to_plot(self, p=1.e-5, t=200., x=1., g=None): """provide the spectrum for a given point to be plotted Parameters ---------- p : float Pressure (Ktable pressure unit) t : float Temperature(K) g: float Gauss point x: float Mixing ratio of the species """ if g is None: raise RuntimeError('A gauss point should be provided with the g= keyword.') gindex=self.gindex(g) return self.interpolate_kdata(log10(p),t,x)[0,:,gindex]
[docs] def plot_distrib(self, ax, p=1.e-5, t=200., wl=1., x=1., xscale=None, yscale='log', **kwarg): """Plot the distribution for a given point Parameters ---------- p : float Pressure (Ktable pressure unit) t : float Temperature(K) wl: float Wavelength (micron) """ wlindex=self.wlindex(wl) toplot=self.interpolate_kdata(log10(p),t,x)[0,wlindex] if xscale is not None: ax.set_xscale(xscale) ax.plot(1.-self.ggrid,toplot,**kwarg) ax.set_xlabel('1-g') else: ax.plot(self.ggrid,toplot,**kwarg) ax.set_xlabel('g') ax.set_ylabel('Cross section ('+self.kdata_unit+')') if yscale is not None: ax.set_yscale(yscale)
def __repr__(self): """Method to output header """ out1=super().__repr__() output=out1+""" weights : {wg} x (vmr) : {xgrid} data oredered following p, t, x, wn, g shape : {shape} """.format(wg=self.weights, xgrid=self.xgrid, shape=self.shape) return output
[docs] def combine_with(self, other, x_self=None, x_other=None, **kwargs): """Method to create a new :class:`Ktable5d` where the kdata of 'self' are randomly mixed with 'other' (that must be a :class:`Ktable`). The main purpose is to add the opacity of a trace species to the background gas of the :class:`Ktable5d` instance. .. warning:: Because: * the opacity from the background and variable gases cannot be isolated, * The values of the array for the vmr of the variable gas (self.xgrid) are not modified (diluted), the treatment here is valid only if `x_other` << 1. For this reason, `x_self` should be either left to None, or 1-`x_other` depending exactly what you want to do. But if you put `x_self`<<1, you are on your own. Parameters ---------- other: :class:`~exo_k.ktable.Ktable` A :class:`Ktable` object to be mixed with. Dimensions should be the same as self (except for xgrid). x_self: float only, optional Volume mixing ratio of self. x_other: float or array, optional Volume mixing ratio of the species to be mixed with (other). If either x_self or x_other are set to `None` (default), the cross section of the species in question are considered to be already normalized with respect to the mixing ratio. Returns ------- :class:`Ktable5d` A new Ktable5d with the opacity of the new species added. """ if not ((self.Np == other.Np) and (self.Nt == other.Nt) and (self.Nw == other.Nw) \ and (self.Ng == other.Ng)): raise TypeError("""in combine_with: kdata tables do not have the same dimensions. I'll stop now!""") if other.Nx is not None: raise TypeError("""in combine_with: cannot combine 2 Ktable5d""") if (self.p_unit!=other.p_unit) or \ (rm_molec(self.kdata_unit)!=rm_molec(other.kdata_unit)): raise RuntimeError("""in combine_with: tables do not have the same units. I'll stop now!""") res=self.copy(cp_kdata=True) tmp=other.copy() if x_other is None: x_other=1. for iX in range(self.Nx): tmp.kdata=self.kdata[:,:,iX,:,:] res.kdata[:,:,iX,:,:]= \ tmp.RandOverlap(other, x_self, x_other*(1.-self.xgrid[iX]), **kwargs) res.setup_interpolation() return res
[docs] def bin_down(self, wnedges=None, weights=None, ggrid=None, remove_zeros=False, num=300, use_rebin=False, write=0): """Method to bin down a kcoeff table to a new grid of wavenumbers (inplace). Parameters ---------- wnedges: array, np.ndarray Edges of the new bins of wavenumbers (cm-1) onto which the kcoeff should be binned down. if you want Nwnew bin in the end, wnedges.size must be Nwnew+1 wnedges[0] should be greater than self.wnedges[0] (JL20 not sure anymore) wnedges[-1] should be lower than self.wnedges[-1] weights: array, np.ndarray, optional Desired weights for the resulting Ktable. ggrid: array, np.ndarray, optional Desired g-points for the resulting Ktable. Must be consistent with provided weights. If not given, they are taken at the midpoints of the array given by the cumulative sum of the weights """ old_ggrid=self.ggrid if weights is not None: self.weights=np.array(weights) self.gedges=np.concatenate(([0],np.cumsum(self.weights))) if ggrid is not None: self.ggrid=np.array(ggrid) else: self.ggrid=(self.gedges[1:]+self.gedges[:-1])*0.5 self.Ng=self.ggrid.size wnedges=np.array(wnedges) if wnedges.size<2: raise TypeError('wnedges should at least have two values') wngrid_filter = np.where((wnedges <= self.wnedges[-1]) & (wnedges >= self.wnedges[0]))[0] if not is_sorted(wnedges): raise RuntimeError('wnedges should be sorted.') indicestosum,wn_weigths=rebin_ind_weights(self.wnedges, wnedges[wngrid_filter]) if write> 10 :print(indicestosum);print(wn_weigths) newkdata=np.zeros((self.Np,self.Nt,self.Nx,wnedges.size-1,self.Ng), dtype=np.float64) for iX in range(self.Nx): newkdata[:,:,iX]=bin_down_corrk_numba((self.Np,self.Nt,wnedges.size-1,self.Ng), \ self.kdata[:,:,iX], old_ggrid, self.ggrid, self.gedges, indicestosum, \ wngrid_filter, wn_weigths, num, use_rebin) self.kdata=newkdata self.wnedges=wnedges self.wns=(wnedges[1:]+wnedges[:-1])*0.5 self.Nw=self.wns.size if remove_zeros : self.remove_zeros(deltalog_min_value=10.) self.setup_interpolation()
[docs] def clip_spectral_range(self, wn_range=None, wl_range=None): """Limits the data to the provided spectral range (inplace): * Wavenumber in cm^-1 if using wn_range argument * Wavelength in micron if using wl_range """ super().clip_spectral_range(wn_range=wn_range, wl_range=wl_range) if self.kdata is not None: self.setup_interpolation()
[docs] def extend_spectral_range(self, **kwargs): """Extends the spectral range of an existing table (inplace). The new bins are filled with zeros (except if remove_zeros=True). See :func:`exo_k.data_table.Data_table.extend_spectral_range` method for details on the arguments and options. """ super().extend_spectral_range(**kwargs) self.setup_interpolation()
[docs] def remap_g(self, ggrid=None, weights=None): """Method to resample a kcoeff table to a new g grid (inplace). Parameters ---------- ggrid: array, np.ndarray New grid of abcissas for quadrature weights: array, np.ndarray New grid of weights """ weights=np.array(weights) ggrid=np.array(ggrid) self.Ng=weights.size newkdata=np.zeros((self.Np, self.Nt, self.Nx, self.Nw, self.Ng)) g_sample_5d(ggrid, newkdata, self.ggrid, self.kdata) self.ggrid=ggrid self.weights=weights self.gedges=np.concatenate(([0],np.cumsum(self.weights))) self.set_kdata(newkdata)
[docs] def read_Qdat(filename): """Reads Q.dat files LMDZ style and extract the vmr grid. Parameters ---------- filename: str Path to file to read. Returns ------- background_mol_names: list list of names of molecules in background gas var_mol: str Name of variable molecule Nx: int Size of xgrid xgrid: array, np.ndarray grid of vmr for variable gas """ with open(filename, "r") as file: Nmol=int(file.readline()) background_mol_names=[] for ii in range(Nmol-1): #print(file.readline().split()[0]) background_mol_names.append(file.readline().split()[0]) var_mol=file.readline().split()[0] Nx=int(file.readline()) xgrid=np.zeros(Nx) for ii in range(Nx): xgrid[ii]=float(file.readline()) return background_mol_names,var_mol,Nx,xgrid