Source code for exo_k.data_table

# -*- coding: utf-8 -*-
"""
@author: jeremy leconte
"""
from datetime import date
import numpy as np
import h5py
import astropy.units as u
from .util.interp import rm_molec,unit_convert,interp_ind_weights,bilinear_interpolation
from .settings import Settings
from .util.spectral_object import Spectral_object
from .util.molar_mass import Molar_mass
from .util.cst import ktable_long_name_attributes, PI
from .util.radiation import Bnu_integral_num, Bnu
from .util.spectrum import Spectrum
from .__version__ import __version__

[docs] class Data_table(Spectral_object): """An abstract class that will serve as a basis for Ktable and Xtable. This class includes all the interpolation and remapping methods. """ __array_priority__=1000 # this allows __rmul__ to take precedence over numpy array broadcasting in multiplications # See https://stackoverflow.com/questions/40694380/ # forcing-multiplication-to-use-rmul-instead-of-numpy-array-mul-or-byp/44634634#44634634 def __init__(self): """Initializes all attributes to `None`""" super().__init__() self.filename=None self.mol=None self.isotopolog_id=0 self.pgrid=None self.logpgrid=None self.tgrid=None self.kdata=None self.logk=None self.Np=None self.Nt=None self.Ng=None # If the table is for xsec, Ng will stay at None. # This will allow us to differentiate xsec from corrk # when needed in the interpolation routines. # Especially to reshape the output. self.DOI='unknown' self.sampling_method='unknown' self.Date_ID='exo_k-v'+__version__+'-'+date.today().strftime("%d/%m/%Y") self.Nx=None # If we are dealing with a Qtable with a variable gas, Nx is the size of the # grid along the dimension of the Volume mixing ratio of the variable gas. # A None value means that we have either a regular Ktable or a Xtable. self.p_unit='unspecified' self.kdata_unit='unspecified' self._settings=Settings()
[docs] def finalize_init(self, p_unit='unspecified', file_p_unit='unspecified', kdata_unit='unspecified', file_kdata_unit='unspecified', remove_zeros=False): """Common code at the end of the initialization of inheriting classes put here to avoid duplicates """ if self.kdata is not None: if self._settings._convert_to_mks: if p_unit == 'unspecified': p_unit='Pa' if kdata_unit == 'unspecified': kdata_unit='m^2/molecule' self.convert_p_unit(p_unit=p_unit,file_p_unit=file_p_unit) self.convert_kdata_unit(kdata_unit=kdata_unit,file_kdata_unit=file_kdata_unit) if remove_zeros : self.remove_zeros(deltalog_min_value=10.)
[docs] def copy_attr(self, other, cp_kdata=False): """Copy attributes from other Parameters ---------- other: :class:`Data_table` :class:`Data_table` object that will be copied cp_kdata: bool, optional If `False`, only metadata are copied """ self.filename=other.filename self.mol =other.mol self.pgrid =np.copy(other.pgrid) self.logpgrid=np.copy(other.logpgrid) self.tgrid =np.copy(other.tgrid) self.wns =np.copy(other.wns) self.wnedges =np.copy(other.wnedges) self.Np =other.Np self.Nt =other.Nt self.Nw =other.Nw self.Ng =other.Ng self.Nx =other.Nx self.logk =other.logk self.p_unit =other.p_unit self.kdata_unit= other.kdata_unit if cp_kdata: self.kdata=np.copy(other.kdata) else: self.kdata=None
[docs] def remove_zeros(self,deltalog_min_value=10.): """Finds zeros in the kdata and set them to (10.**-deltalog_min_value) times the minimum positive value in the table (inplace). This is to be able to work in logspace. Parameters ---------- deltalog_min_value: float """ mask = np.zeros(self.kdata.shape,dtype=bool) mask[np.nonzero(self.kdata)] = True minvalue=np.amin(self.kdata[mask]) self.kdata[~mask]=minvalue/(10.**deltalog_min_value)
[docs] def convert_p_unit(self, p_unit='unspecified', file_p_unit='unspecified'): """Converts pressure to a new unit (inplace). Parameters ---------- p_unit: str String identifying the pressure units to convert to (e.g. 'bar', 'Pa', 'mbar', or any pressure unit recognized by the astropy.units library). If ='unspecified', no conversion is done. file_p_unit : str, optional String to specify the current pressure unit if it is unspecified or if you have reasons to believe it is wrong (e.g. you just read a file where you know that the pressure grid and the pressure unit do not correspond) """ #if p_unit==file_p_unit and self.p_unit != 'unspecified': return current_p_unit=self.p_unit self.p_unit,conversion_factor=unit_convert( \ 'p_unit',unit_file=current_p_unit,unit_in=file_p_unit,unit_out=p_unit) self.pgrid=self.pgrid*conversion_factor self.logpgrid=np.log10(self.pgrid)
[docs] def convert_kdata_unit(self, kdata_unit='unspecified', file_kdata_unit='unspecified'): """Converts kdata to a new unit (inplace). Parameters ---------- kdata_unit: str String to identify the units to convert to. Accepts 'cm^2', 'm^2' or any surface unit recognized by the astropy.units library. If ='unspecified', no conversion is done. In general, kdata should be kept in 'per number' or 'per volume' units (as opposed to 'per mass' units) as composition will always be assumed to be a number or volume mixing ratio. Opacities per unit mass are not supported yet. Note that you do not need to specify the '/molec' or '/molecule' in the unit. file_kdata_unit : str String to specify the current kdata unit if it is unspecified or if you have reasons to believe it is wrong (e.g. you just read a file where you know that the kdata grid and the kdata unit do not correspond) """ #if kdata_unit==file_kdata_unit and self.kdata_unit != 'unspecified': return tmp_k_u_in=rm_molec(file_kdata_unit) tmp_k_u_out=rm_molec(kdata_unit) tmp_k_u_file=rm_molec(self.kdata_unit) self.kdata_unit,conversion_factor=unit_convert( \ 'kdata_unit',unit_file=tmp_k_u_file,unit_in=tmp_k_u_in,unit_out=tmp_k_u_out) self.kdata_unit=self.kdata_unit+'/molecule' self.kdata=self.kdata*conversion_factor
[docs] def convert_to_mks(self): """Converts units to MKS (inplace). """ self.convert_kdata_unit(kdata_unit='m^2') self.convert_p_unit(p_unit='Pa')
[docs] def interpolate_kdata(self, logp_array=None, t_array=None, x_array=1., log_interp=None, logp_interp=True, wngrid_limit=None, **kwargs): """interpolate_kdata interpolates the kdata at on a given temperature and log pressure profile. If a volume mixing ratio profile (`x_array`) is given, the cross section computed for the species is multiplied by `x_array` to account for the 'dilution' of the opacity. Parameters ---------- logp_array: array, np.ndarray log 10 pressure array to interpolate to t_array: array, np.ndarray, same size as logp_array Temperature array to interpolate to x_array: None Volume mixing ratio array used to renormalize the cross section. If floats are given, they are interpreted as arrays of size 1. Other Parameters ---------------- wngrid_limit: list or array if an array of to values is given, interpolates only within this array log_interp: bool, optional Whether the interpolation is linear in kdata or in log(kdata) Returns ------- array of shape (logp_array.size, self.Nw (, self.Ng)) The interpolated kdata. """ if hasattr(logp_array, "__len__"): logp_array=np.array(logp_array, dtype=float) else: logp_array=np.array([logp_array], dtype=float) if hasattr(t_array, "__len__"): t_array=np.array(t_array) else: t_array=np.array([t_array]) if hasattr(x_array, "__len__"): x_array=np.array(x_array) else: x_array=np.array([x_array]) tind,tweight=interp_ind_weights(t_array,self.tgrid) if logp_interp: lpind,lpweight=interp_ind_weights(logp_array,self.logpgrid) else: lpind,lpweight=interp_ind_weights(10**logp_array,self.pgrid) if wngrid_limit is None: wngrid_filter = slice(None) Nw=self.Nw else: wngrid_limit=np.array(wngrid_limit) wngrid_filter = np.where((self.wnedges > wngrid_limit.min()) & ( self.wnedges <= wngrid_limit.max()))[0][:-1] Nw=wngrid_filter.size if self.Ng is None: res=np.zeros((tind.size,Nw)) else: res=np.zeros((tind.size,Nw,self.Ng)) if log_interp is None: log_interp=self._settings._log_interp if log_interp: for ii in range(tind.size): kc_p1t1=np.log(self.kdata[lpind[ii],tind[ii]][wngrid_filter].ravel()) kc_p0t1=np.log(self.kdata[lpind[ii]-1,tind[ii]][wngrid_filter].ravel()) kc_p1t0=np.log(self.kdata[lpind[ii],tind[ii]-1][wngrid_filter].ravel()) kc_p0t0=np.log(self.kdata[lpind[ii]-1,tind[ii]-1][wngrid_filter].ravel()) res[ii]=np.reshape(bilinear_interpolation(kc_p0t0, kc_p1t0, kc_p0t1, kc_p1t1, lpweight[ii], tweight[ii]),(Nw,-1)).squeeze() return (x_array*np.exp(res).transpose()).transpose() # trick for the broadcasting to work whatever the shape of x_array else: for ii in range(tind.size): kc_p1t1=self.kdata[lpind[ii],tind[ii]][wngrid_filter].ravel() kc_p0t1=self.kdata[lpind[ii]-1,tind[ii]][wngrid_filter].ravel() kc_p1t0=self.kdata[lpind[ii],tind[ii]-1][wngrid_filter].ravel() kc_p0t0=self.kdata[lpind[ii]-1,tind[ii]-1][wngrid_filter].ravel() res[ii]=np.reshape(bilinear_interpolation(kc_p0t0, kc_p1t0, kc_p0t1, kc_p1t1, lpweight[ii], tweight[ii]),(Nw,-1)).squeeze() return (x_array*res.transpose()).transpose()
# trick for the broadcasting to work whatever the shape of x_array
[docs] def remap_logPT(self, logp_array=None, t_array=None, x_array=None): """remap_logPT re-interpolates the kdata on a new temperature and log pressure grid (inplace). Parameters ---------- logp_array: Array log 10 pressure array to interpolate to t_array: Array temperature array to interpolate to x_array: dummy argument to be consistent with interpolate_kdata in Ktable5d Whether the interpolation is linear in kdata or in log10(kdata) is controlled by self._settings._log_interp """ if x_array is not None: print('be careful, providing an x_array is usually for Ktable5d') t_array=np.array(t_array) logp_array=np.array(logp_array, dtype=float) tind,tweight=interp_ind_weights(t_array,self.tgrid) lpind,lpweight=interp_ind_weights(logp_array,self.logpgrid) lpindextended=lpind[:,None] if self.Ng is None: tw=tweight[None,:,None] # trick to broadcast over Nw and Ng a few lines below pw=lpweight[:,None,None] else: tw=tweight[None,:,None,None] # trick to broadcast over Nw and Ng a few lines below pw=lpweight[:,None,None,None] #tw=tweight.reshape((1,tweight.size,1,1)) ## trick to broadcast over Nw and Ng a few lines below #pw=lpweight.reshape((lpweight.size,1,1,1)) kc_p1t1=self.kdata[lpindextended,tind] kc_p0t1=self.kdata[lpindextended-1,tind] kc_p1t0=self.kdata[lpindextended,tind-1] kc_p0t0=self.kdata[lpindextended-1,tind-1] if self._settings._log_interp is True: kdata_tmp= np.log(kc_p1t1)*pw*tw \ +np.log(kc_p0t1)*(1.-pw)*tw \ +np.log(kc_p1t0)*pw*(1.-tw) \ +np.log(kc_p0t0)*(1.-pw)*(1.-tw) self.kdata=np.exp(kdata_tmp) else: kdata_tmp= (kc_p1t1)*pw*tw \ +(kc_p0t1)*(1.-pw)*tw \ +(kc_p1t0)*pw*(1.-tw) \ +(kc_p0t0)*(1.-pw)*(1.-tw) self.kdata=kdata_tmp self.logpgrid=logp_array self.pgrid =10**self.logpgrid self.tgrid =t_array self.Np =logp_array.size self.Nt =t_array.size
[docs] def pindex(self, p): """Finds and returns the index corresponding to the given pressure p (units must be the same as the ktable) """ return min(np.searchsorted(self.pgrid,p),self.Np-1)
[docs] def tindex(self, t): """Finds and returns the index corresponding to the given temperature t (in K) """ return min(np.searchsorted(self.tgrid,t),self.Nt-1)
def __repr__(self): """Method to output header """ output=""" file : {file} molecule : {mol} p grid : {p} p unit : {p_unit} t grid (K) : {t} wn grid : {wn} wn unit : {wnu} kdata unit : {kdata_unit}""".format(file=self.filename,mol=self.mol, p=self.pgrid, p_unit=self.p_unit, t=self.tgrid, wn=self.wns, wnu=self.wn_unit, kdata_unit=self.kdata_unit) return output
[docs] def plot_spectrum(self, ax, p=1.e-5, t=200., x=1., g=None, x_axis='wls', xscale=None, yscale=None, **kwarg): """Plot the spectrum for a given point Parameters ---------- ax : :class:`pyplot.Axes` A pyplot axes instance where to put the plot. p : float Pressure (Ktable pressure unit) t : float Temperature (K) g: float Gauss point x: float Mixing ratio of the species Other Parameters ---------------- x_axis: str, optional If 'wls', x axis is wavelength. Wavenumber otherwise. x/yscale: str, optional If 'log' log axes are used. """ toplot=self.spectrum_to_plot(p=p, t=t, x=x, g=g) if x_axis == 'wls': ax.plot(self.wls,toplot,**kwarg) ax.set_xlabel('Wavelength (micron)') else: ax.plot(self.wns,toplot,**kwarg) ax.set_xlabel('Wavenumber (cm$^{-1}$)') ax.set_ylabel('Cross section ('+self.kdata_unit+')') if xscale is not None: ax.set_xscale(xscale) if yscale is not None: ax.set_yscale(yscale)
[docs] def spectrum_to_plot(self, p=1.e-5, t=200., x=1., g=None): """Dummy function to be defined in inheriting classes """ raise NotImplementedError()
[docs] def vmr_normalize(self, x_self): """Rescales kdata to account for the fact that the gas is not a pure species Parameters ---------- x_self: float or array of shape (`self.Np,self.Nt`) The volume mixing ratio of the species. Returns ------- array The vmr normalized kdata (x_self*self.kdata). """ if x_self is None : return self.kdata if isinstance(x_self, (float,int)): return x_self*self.kdata if not isinstance(x_self,np.ndarray): print("""in vmr_normalize: x_self should be a float or a numpy array: I'll probably stop now!""") raise TypeError('bad mixing ratio type') if np.array_equal(x_self.shape,self.kdata.shape[0:2]): if self.Ng is None: return x_self[:,:,None]*self.kdata else: return x_self[:,:,None,None]*self.kdata else: print("""in vmr_normalize: x_self shape should be (pgrid.size,tgrid.size): I'll stop now!""") raise TypeError('bad mixing ratio type')
def __rmul__(self, vmr): """Defines the right "*" operator with a vmr """ res=self.copy() res.kdata=self.vmr_normalize(vmr) return res __mul__ = __rmul__
[docs] def combine_with(self, other, x_self=None, x_other=None, **kwargs): """Method to create a new `Data_table` where the kdata of 'self' are: * randomly mixed with 'other' for a `Ktable`. * added to 'other' for an `Xtable` Parameters ---------- other : same class as self A :class:`Data_table` object to be mixed with. Dimensions should be the same as self. x_self : float or array, optional Volume mixing ratio of self. x_other : float or array, optional Volume mixing ratio of the species to be mixed with (other). If either x_self or x_other are set to `None` (default), the cross section of the species in question are considered to be already normalized with respect to the mixing ratio. Returns ------- :class:`Data_table` A new table for the mix """ if other.Nx is not None: # if other is a Ktable5d, use the method for this class instead. return other.combine_with(self, x_self=x_other, x_other=x_self, **kwargs) if not np.array_equal(self.shape,other.shape): raise TypeError("""in combine_with: kdata tables do not have the same dimensions. I'll stop now!""") if (self.p_unit!=other.p_unit) or \ (rm_molec(self.kdata_unit)!=rm_molec(other.kdata_unit)): raise RuntimeError("""in combine_with: tables do not have the same units. I'll stop now!""") res=self.copy(cp_kdata=False) if self.Ng is None: res.kdata=self.vmr_normalize(x_self) + other.vmr_normalize(x_other) else: res.kdata=self.RandOverlap(other, x_self, x_other, **kwargs) return res
def __add__(self, other): """Defines the "+" operator with another Data_table .. warning:: __radd__ is not implemented because we want to use the __add__ (or combine_with) method of the left object. """ return self.combine_with(other) def __getitem__(self, key): """To access the data without typing self.kdata[] Parameters ---------- key: can be slices, like for a numpy array. """ return self.kdata[key]
[docs] def set_kdata(self, new_kdata): """Changes kdata (inplace). this is preferred to directly accessing kdata because this method checks that the array has the right dimensions Parameters ---------- new_kdata: array, np.ndarray New array of kdata. """ if not isinstance(new_kdata,np.ndarray): new_kdata=np.array(new_kdata) sh=np.array(new_kdata.shape) if sh.size != self.shape.size: raise RuntimeError('new_kdata does not have the right number of dimensions') if np.all(sh == self.shape): self.kdata=new_kdata else: print('Expected shape : ', self.shape) print('shape of new_kdata: ', sh) raise RuntimeError('new_kdata does not have the right shape')
[docs] def clip_spectral_range(self, wn_range=None, wl_range=None): """Limits the data to the provided spectral range (inplace): * Wavenumber in cm^-1 if using wn_range argument * Wavelength in micron if using wl_range """ iw_min, iw_max = self.select_spectral_range(wn_range, wl_range) if self.Nx is None: self.kdata=self.kdata[:,:,iw_min:iw_max] else: self.kdata=self.kdata[:,:,:,iw_min:iw_max]
[docs] def extend_spectral_range(self, wngrid_left=None, wngrid_right=None, wnedges_left=None, wnedges_right=None, remove_zeros=False): """Extends the spectral range of an existing table (inplace). The new bins are filled with zeros (except if remove_zeros=True) Parameters ---------- wngrid_left: array, np.ndarray Array of wavenumbers to add to the small wn end of the table. wngrid_right: array, np.ndarray Array of wavenumbers to add to the high wn end of the table. .. warning:: There should not be any overlap between wngrid_left, wngrid_right, and the current wavenumber grid of the table. Other Parameters ---------------- remove_zeros: bool (optional) Whether zeros in the resulting table should be removed using :func:`remove_zeros`. """ new_wns=[] new_wnedges=[] idx_offset=0 if wngrid_left is not None: wngrid_left=np.array(wngrid_left, dtype=float) if wngrid_left[-1]>=self.wnedges[0]: raise RuntimeError("The left grid overlaps with the current one") new_wns.append(wngrid_left) if wnedges_left is not None: wnedges_left=np.array(wnedges_left, dtype=float) new_wnedges.append(wnedges_left) else: new_wnedges.append([wngrid_left[0]]) new_wnedges.append(0.5*(wngrid_left[:-1]+wngrid_left[1:])) idx_offset=wngrid_left.size else: if wnedges_left is not None: if wnedges_left[-1]>=self.wnedges[0]: raise RuntimeError("The left grid overlaps with the current one") wnedges_left=np.array(wnedges_left, dtype=float) new_wnedges.append(wnedges_left) new_wns.append(0.5*(wnedges_left[:-1]+wnedges_left[1:])) new_wns.append([0.5*(wnedges_left[-1]+self.wnedges[0])]) idx_offset=wnedges_left.size new_wns.append(self.wns) new_wnedges.append(self.wnedges) if wngrid_right is not None: wngrid_right=np.array(wngrid_right, dtype=float) if wngrid_right[0]<=self.wnedges[-1]: raise RuntimeError("The right grid overlaps with the current one") new_wns.append(wngrid_right) if wnedges_right is not None: wnedges_right=np.array(wnedges_right, dtype=float) new_wnedges.append(wnedges_right) else: new_wnedges.append(0.5*(wngrid_right[:-1]+wngrid_right[1:])) new_wnedges.append([wngrid_right[-1]]) else: if wnedges_right is not None: wnedges_right=np.array(wnedges_right, dtype=float) if wnedges_right[0]<=self.wnedges[-1]: raise RuntimeError("The right grid overlaps with the current one") new_wnedges.append(wnedges_right) new_wns.append([0.5*(wnedges_right[0]+self.wnedges[-1])]) new_wns.append(0.5*(wnedges_right[:-1]+wnedges_right[1:])) new_wns=np.concatenate(new_wns) new_wnedges=np.concatenate(new_wnedges) newshape=self.shape if self.Nx is None: newshape[2]=new_wns.size newkdata=np.zeros(newshape) newkdata[:,:,idx_offset:idx_offset+self.Nw]=self.kdata else: newshape[3]=new_wns.size newkdata=np.zeros(newshape) newkdata[:,:,:,idx_offset:idx_offset+self.Nw]=self.kdata self.kdata=newkdata self.wns=new_wns self.wnedges=new_wnedges self.Nw=self.wns.size if remove_zeros : self.remove_zeros(deltalog_min_value=10.)
[docs] def bin_down_cp(self, wnedges=None, **kwargs): """Creates a copy of the instance and bins it down using the methods in Ktable or Xtable. See :func:`exo_k.ktable.Ktable.bin_down` or :func:`exo_k.xtable.Xtable.bin_down` for details on parameters. Returns ------- :class:`~exo_k.ktable.Ktable` or :class:`~exo_k.xtable.Xtable` object The binned down table. """ res=self.copy() res.bin_down(wnedges=wnedges, **kwargs) return res
@property def shape(self): """Returns the shape that self.kdata should have to be compatible with the parameter grid. """ return np.array(list(filter(None, [self.Np,self.Nt,self.Nx,self.Nw,self.Ng])))
[docs] def change_molecule_name(self, mol_name): """Changes name of the molecule (self.mol attribute). Parameters ---------- mol_name: str New molecule name """ self.mol=mol_name
@property def molar_mass(self): """Computes molar mass from molecule name """ return Molar_mass().fetch(self.mol)
[docs] def blackbody(self, Temperature, **kwargs): """See Spectral_object.blackbody """ return Spectrum(super().blackbody(Temperature, **kwargs), self.wns, self.wnedges)
[docs] def write_hdf5_common(self, f, compression="gzip", compression_level=9, p_unit=None): """Method that writes datasets and attributes that are common to X and Ktables. Parameters ---------- f: h5py file instance The file to write that is created in daughter classes """ dt = h5py.string_dtype(encoding='utf-8') f.create_dataset("DOI", (1,), data=self.DOI, dtype=dt) f.create_dataset("Date_ID", (1,), data=self.Date_ID, dtype=dt) f.create_dataset("mol_name", (1,), data=self.mol, dtype=dt) f.create_dataset("t", data=self.tgrid, compression=compression, compression_opts=compression_level) f["t"].attrs["units"] = 'K' if p_unit is not None: conv_factor=u.Unit(self.p_unit).to(u.Unit(p_unit)) data_to_write=self.pgrid*conv_factor f.create_dataset("p", data=data_to_write, compression=compression, compression_opts=compression_level) f["p"].attrs["units"] = p_unit else: f.create_dataset("p", data=self.pgrid, compression=compression, compression_opts=compression_level) f["p"].attrs["units"] = self.p_unit f.create_dataset("wnrange", data=self.wnrange, compression=compression, compression_opts=compression_level) f.create_dataset("wlrange", data=self.wlrange, compression=compression, compression_opts=compression_level) for key,val in ktable_long_name_attributes.items(): if key in f: f[key].attrs["long_name"] = val for key in ('bin_edges', 'bin_centers', 'wnrange'): if key in f: f[key].attrs["units"] = self.wn_unit if 'wlrange' in f: f['wlrange'].attrs["units"] = 'micron'
[docs] def toLogK(self): """Changes kdata to log 10. """ if not self.logk: self.logk=True self.kdata=np.log10(self.kdata) return