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Foreword

Astrobiology, also known as bioastronomy or exobiology. refers to a vast area
of scientific research. The formation of the solar system, its accretion and the
formation of the planets, the origin of the molecules out of which living beings are
made, the traces of present and past life within the solar system and elsewhere,
as well as the search for extra-solar planets, are all part of astrobiology. And the
above list is not exhaustive.

For obvious reasons, astrobiology is a field without the traditional barriers
between astronomers, chemists, physicists, geologists, and biologists or between
experimentalists and theorists, observers and those who model the observations.
As such, a single researcher cannot possess all the knowledge necessary to be
an “astrobiologist”™. One can even go a step further and say that while astrobi-
ology clearly exists as a field of scientific research, there are no astrobiologists.
Astrobiology exists at a higher level of organization where the knowledge is not
that of an individual but that of a research community whose members all share
the same interest for the fundamental questions concerning the emergence of
life, its evolution, and how life is distributed on Earth and throughout the uni-
verse. Each person contributes in piecing together this vast puzzle through their
knowledge and their experimental and theoretical tools.

As often, if not always, when treating questions dealing with the past or
with a sort of “elsewhere” where one cannot go and that one can only study
indirectly, we must be satisfied with plausible scenarios rather than clear proof or
other certainties. In this way, the strategy of the astrobiologist is similar to that
of an archeologist or a paleontologist. There exists, however, major differences
between the path of a chemist interested in the origin of life, and thus in prebiotic
chemical evolution, that of a biologist wanting to follow time back starting with
current life, and that of a paleontologist searching for the traces of primitive life
and its evolution and extinctions.

While paleontologists have some hard data at hand (fossils and other physi-
cal traces), the situation is very different for chemists, who are obliged to build
a plausible scenario for the appearance of life based on hypotheses developed by
specialists in other fields (composition of the primitive terrestrial atmosphere,
addition of extraterrestrial organic material, ete.). For the most part, these hy-
potheses are unverifiable. The biologist, on the other hand, tries to use phyloge-
netic tools to find and understand LUCA., the first common ancestor who must
have been preceded by other micro-organisms with no descendants.
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Similarly. there is an important difference between the strategies of a ge-
ologist. expert in the transition between the Tertiary and Cretaceous periods,
and the planetologist who would like to describe the Earth during the period
of intense meteoritic bombardment. The former disposes of observations and
measures (iridium content, sediment ashes, shocked quartz, etc.), which pro-
vide a reasonable explanation for the great biological Cretaceous Tertiary crisis
caused by a major meteorite impact. The latter only has access to indirect data
based on observations of lunar craters but also simulations, which are of course
based on theoretical models.

Since every scientist has a limited area of expertise, the scenario that he/she
proposes can only be validated by the constraints and parameters that he/she
knows and masters. Such an individual strategy can thus lead to as many scenar-
ios as there are researchers. A multidisciplinary approach has the advantage of
subjecting each individual proposition to a much larger number of constraints.
This naturally leads to the rejection of “weak” scenarios and to the emergence
of more robust hypotheses. For example, it is pointless for a chemist to invoke
the role of a prebiotic chemical reaction if the conditions needed for the reaction
to occur are completely incompatible with the primitive Earth conditions deter-
mined by the planetologists. This simple example illustrates the importance of
interdisciplinary discussion for all those who consider themselves to be astrobi-
ologists. The CNRS summer schools such as Propriano in 1999 and 2003 and La
Colle-sur-Loup in 2001 have contributed to strengthening the dialog within the
French scientific community.

The goal of the first summer school, Exobio’99 in Propriano, was to provide
participants with an objective image of what we know today about the early
Earth conditions — the oceans, the proto-continents, the atmosphere, and even
the climate — but also of what we know about the solar system during the first
billion years of its history. Some stages in the chemical evolution that may have
occurred on the young planet Earth, with a different solar radiation, less intense
in the visible part of the spectrum but much more intense in the RX region
were also discussed during the first summer school. The discussion then moves
towards the biological evolution, the early stages of which are still very poorly
understood. The problems related to the exploration of Mars and Titan were
then addressed.

The second summer school, Exobio ‘01 in La Colle-sur-Loup, was more
oriented towards the chemistry, molecular biology, biochemistry, and biologi-
cal evolution of early Earth. Its main theme was the study of organisms re-
ferred to as extremophiles, which could provide information on the nature of
the first unicellular organisms that populated the young oceans. Among the
specific topics addressed were the autoformation of biological membranes, the
possible origins of the homochirality of the constituents of living beings, the
protometabolisms that may be inferred from the study of metabolisms, and
the possible role of ribozymes before the emergence of catalysis by proteinic
enzymes.
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The texts that follow represent the first volume of the series “Lectures in
Astrobiology” and are the result of the first two schools. The chapters were
written for readers already familiar with the general topic of the origin of life
and life “elsewhere” but not to the extent to which each specialist is in his
own discipline. As such, they are meant as much for students as for established
scientists seeking to broaden their horizons in the vast field of the origins of life.
We hope these texts will initiate vocations and incite researchers and students
specialized in one of the individual fields to join the broad forum of astrobiology.
It is undeniable that the questions forming the basis of astrobiology are among
the big questions that humanity has asked itself since its inception and which
recent decades have attempted to answer; answers that seem more and more
plausible although necessarily partial.
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First Part Introduction

Researches related to the origins of life can develop in two different directions:
they can look towards the past and try to determine how life appeared on Earth.
or they can explore present-day Universe in the hunt for life. Both ways proceed
by using the same strategy: research of “favourable” conditions for life to appear.
These conditions are the necessary prerequisites for prebiotic chemistry to occur.
Of course, until now. nobody has been able to create life but, nevertheless.
chemists determined the necessary conditions to generate amino acids, purine
and pyrimidine bases and many other “small” molecules. They also know how
to obtain (small) polypeptides and even how to create membranes.

Very often. many plausible prebiotic scenarios have been tested and, as sev-
eral experimental procedures are able to lead to the same results. there is no
unique solution. These different procedures permit minimal requirements to be
established in terms of pressure, temperature, pH and reactants, which are neces-
sary to obtain some of the main components (molecules as well as supramolecular
systems) of living species. For instance, liquid water is a parameter that appears
crucial for prebiotic chemistry and life development. Such a condition allows
both thermodynamic and compositional constraints to be fixed. Of course, the
basic elements for life (C, O, H, N, etc.) must also be available.

This is why planetologists develop intensive researches in order to determine
if liquid water is or was present on planets and satellites of the Solar System
(Mars, Europa ... ). Moreover, the research of extrasolar planets becomes a very
important and attractive challenge and the recent discovery of some extrasolar
planetary atmospheres appears fundamental in the research of sites favourable
for life development. For the Earth’s and the other solar planets, the atmosphere
origins (as well as the origin of water and C-, O-, N-, H-bearing molecules) are
assessed to be endogenous or/and exogenous. Consequently. it becomes critical
to determine the respective importance of endogenous and exogenous processes.
In the exogenous case, matter is assumed to come from other parts of the Solar
System and to have been transferred to Earth surface by comets, asteroids,
meteorites and micrometeorites. These are the reasons why astrobiology is deeply
interested not only in various aspects of cosmology and nucleosynthesis but also
in the accretion process of the Solar System and more generally of planetary
systems around stars. How elements and even molecules, initially present in the
protosolar nebula, were redistributed and transformed during accretion is also
a problem of major interest.
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On the other hand, geological and biological investigations on Earth showed
that autotrophic life can develop without light energy, as proved by life devel-
opment associated to submarine black smokers. These hydrothermal vents are
genetically linked to the internal Earth heat production and then to plate tec-
tonics. This points to the possibility for life to develop not only because of solar
energy but also due to planetary internal energy. On Earth, plate tectonics lead
to a bimodal repartition on altitudes (ocean vs. continent). The possible dis-
covery of a bimodal altitude distribution on Mars provides a strong argument
in favour of an early plate-tectonic activity and also appears as a fundamental
element for research of early life on this planet. Similarly, the possibility to have
submarine hydrothermal vents on Europa, one of the satellites of Jupiter. is an
exciting possibility. Evidence for the discovery of life in the Solar System or bet-
ter on exoplanets, would demonstrate that the emergence of life does not result
from the succession of highly improbable and complex events that occurred only
on Earth. On the contrary. it would show that more simple processes are in-
volved in the appearance of life, processes able to develop and to be reproduced
in several places in the universe.

Looking to Earth past could appear easier as we are sure that at least one time
in Earth history all conditions for life development were realised. Unfortunately,
this is the only certainty we have and as we look farther into the past more
the record of traces of life is tiny and ambiguous. Indeed, very old rocks (older
than 3.8Ga) are not very abundant and even if they are preserved they have
been transformed by tectonic and metamorphic processes. The debate around
Isua (3.85Ga) traces of life is a perfect illustration of the difficulty to obtain
a clear and unambiguous interpretation of geological records. Strategies are now
being developed in order to clearly and unambiguously identify very old fossil
traces of life.

In addition, some parameters such as atmosphere and also ocean composi-
tions are drastically different today from what they have been on early Earth.
Similarly. due to Earth cooling, terrestrial dynamics changed in the course of
time, generating rocks such as komatiites that are no longer produced. More-
over, it is not clearly established when plate tectonics began to operate on Earth.
Some scenarios for life development imply alternation of dry and aqueous peri-
ods, which means that emerged continents existed but we do not possess obvious
evidences of emerged continents before 3.5Ga. This does not indicate that they
did not exist but it adds a greater level of uncertainty in the life-emergence
scenarios.

This is why, in order to discuss the conditions prevailing on Earth at that
time, researches develop towards the oldest preserved rocks. Unfortunately. rocks
older than 4.0Ga are still poorly known, so that modelling and simulation are
still more or less the only ways to discuss and reconstruct the first 500Ma of
our planet.
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Chemical evolution, which started very early in our Universe, is not only a pre-
liminary but also an essential step to any biological evolution. All the discussions
concerning a hypothetical RNA world evolving towards a DNA world is based
on the assumption that deoxyribose derives from ribose or, at least, that the
replacement of ribose by deoxyribose was an important step in biological evolu-
tion. Many other examples of the interdependence between chemical evolution
and biological evolution are known.

Unfortunately, we have no molecular fossils or relics of the prebiotic world and
our knowledge about molecular evolution during the prebiotic period is based
on models and scenarios. These scenarios themselves are based on hypotheses
concerning the physico-chemical conditions present at the surface of the young
Earth. They are also supported by experimental simulations and by indirect ob-
servations. Indeed, interstellar clouds that can be observed today are probably
not very different from the protosolar nebula and chondritic and micrometeoritic
matter that we can study in our laboratories today are probably similar to the
chondritic or cometary matter that fell on the young Earth in large quantities
during the prebiotic period. LUCA (our last universal common ancestor) was
most probably a unicellular entity with a membrane, a metabolism, a reproduc-
tion capability and therefore a genetic code. LUCA itself was most probably
not the most primitive form of life on Earth. Chemists and biologists must in-
troduce constraints into the scenarios they suggest for the transition steps from
nonlife to life. These constraints are based on what we know about the chemical
elements and their reactivity, about the physicochemical laws, and very impor-
tantly, about the conditions prevailing on the young Earth when the transition
occurred. The study of extreme biotopes on Earth, such as the ices above the
Vostock Lake or the vicinity of oceanic black smokers, yields information about
the diversity of life and also about the eventual universal requirements for life.

Together with astronomers, planetologists and geologists, biologists and
chemists involved in exobiological studies participate in the elaboration of these
models. As already mentioned, the chemist has no relics, no molecular fossils
of the prebiotic period but he/she is the only one who can perform experimen-
tal simulations to help a model progress. The biochemist and the biologist are
the only ones who work with living species, they know how living species have
evolved and they are ready to take the risk to extrapolate towards the past: their
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approach could be described as a top-down approach while the chemists have
a bottom-up approach. The hope (or better the dream) is that, one day, chemists
and biologists could reach a similar conclusion about what LUCA looked like!

For the chemist, as for all “specialists” involved in exobiology, the most im-
portant contribution to the field can only come from their capacity to interact
efficiently with other specialists. Exobiology is probably the best example of an
interdisciplinary science: all natural sciences but also mathematics and infor-
matics participate to its development. The next ensemble of chapters is a clear
example of the work of chemists, biochemists and biologists, working in differ-
ent fields but searching to contribute to the understanding of what remains an
important problem: the emergence of life from nonlife.
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