pytmosph3r.planetary_system.orbit.orbit_circular

Module Contents

neg_pi(x)

Simply get negative values for 2*Pi > x > Pi.

class CircularOrbit(a: None | float | astropy.units.Quantity[pytmosph3r.util.pt.length] = None, period: None | float | astropy.units.Quantity[pytmosph3r.util.pt.time] = None, star_coordinates: Tuple[float, float] = None, inclination: float | astropy.units.Quantity[pytmosph3r.util.pt.angle] = None)[source]

Bases: pytmosph3r.planetary_system.orbit.base.Orbit

This class implement the default behaviour for the trajectory of a planet, ie a circular orbit with tidal lock.

Parameters:
  • a (Optional[float]) – Distance between the star and the planet in meter (m), if none provided default to 1 AU

  • period (Optional[float]) – Orbital period in seconds.

  • star_coordinates (tuple) – Defines the coordinates of the star (latitude, longitude) in the planetary coordinate system if needed. Used for emission (top flux) for example. By default, the position is ( 0, 0).

  • inclination (float) – Inclination of the orbit in radians (rad).

property a
property inclination
property period
property star_coordinates
property is_tidal_locked: bool
build(model=None)[source]
r(true_anomaly: float = 0) float[source]

Returns the distance between the star and the planet in m.

Parameters:

() (true_anomaly) – True anomaly in radian.

time(phase)[source]

Converts phase (in radians) to time (in seconds), using period.

phase(time)[source]

Converts time (in seconds) to phase (in radians), using period.

star_coordinates_projected(phase)[source]

Taken from pytmosph3r.util.geometry.CircleIntersection.star_coordinates

obs_long_to_phase(longitude)[source]

Converts the longitude of an observer (in \(rad\)) to the phase of the transit. The phase is defined as equal to 0 during mid-transit and increasing during transit. The longitude of the observer is equal to \(pi\) + substellar_longitude at mid transit (and also increasing).

phase_to_obs_long(phase)[source]

Converts a phase (in \(rad\)) to the longitude of the observer. See definition of phase and observer in obs_long_to_phase() below.

phase_from_observer(obs_loc=(0, np.pi))[source]

Calculates the phase of the transit using the coordinates of the observer and the star (in \(rad\)). The phase is defined as equal to 0 at mid-transit and increasing during transit.

observer_from_phase(phase=0)[source]

Calculates the phase of the transit using the coordinates of the observer and the star (in \(rad\)). The phase is defined as equal to 0 at mid-transit and increasing during transit. This function only supports stars at the equator (0) or at the pole (+/-Pi/2). :param phase: phase in rad :type phase: float

observer_from_time(time=0)[source]

Function to convert time to observer position.

time_from_observer(observer)[source]

Function to get time from observer position.