pytmosph3r.planetary_system.orbit.orbit_circular
Module Contents
- neg_pi(x)
Simply get negative values for 2*Pi > x > Pi.
- class CircularOrbit(a: None | float | astropy.units.Quantity[pytmosph3r.util.pt.length] = None, period: None | float | astropy.units.Quantity[pytmosph3r.util.pt.time] = None, star_coordinates: Tuple[float, float] = None, inclination: float | astropy.units.Quantity[pytmosph3r.util.pt.angle] = None)[source]
Bases:
pytmosph3r.planetary_system.orbit.base.Orbit
This class implement the default behaviour for the trajectory of a planet, ie a circular orbit with tidal lock.
- Parameters:
a (Optional[float]) – Distance between the star and the planet in meter (m), if none provided default to 1 AU
period (Optional[float]) – Orbital period in seconds.
star_coordinates (tuple) – Defines the coordinates of the star (latitude, longitude) in the planetary coordinate system if needed. Used for emission (top flux) for example. By default, the position is ( 0, 0).
inclination (float) – Inclination of the orbit in radians (rad).
- property a
- property inclination
- property period
- property star_coordinates
- property is_tidal_locked: bool
- r(true_anomaly: float = 0) float [source]
Returns the distance between the star and the planet in m.
- Parameters:
() (true_anomaly) – True anomaly in radian.
- star_coordinates_projected(phase)[source]
Taken from pytmosph3r.util.geometry.CircleIntersection.star_coordinates
- obs_long_to_phase(longitude)[source]
Converts the longitude of an observer (in \(rad\)) to the phase of the transit. The phase is defined as equal to 0 during mid-transit and increasing during transit. The longitude of the observer is equal to \(pi\) +
substellar_longitude
at mid transit (and also increasing).
- phase_to_obs_long(phase)[source]
Converts a phase (in \(rad\)) to the longitude of the observer. See definition of phase and observer in
obs_long_to_phase()
below.
- phase_from_observer(obs_loc=(0, np.pi))[source]
Calculates the phase of the transit using the coordinates of the observer and the star (in \(rad\)). The phase is defined as equal to 0 at mid-transit and increasing during transit.
- observer_from_phase(phase=0)[source]
Calculates the phase of the transit using the coordinates of the observer and the star (in \(rad\)). The phase is defined as equal to 0 at mid-transit and increasing during transit. This function only supports stars at the equator (0) or at the pole (+/-Pi/2). :param phase: phase in rad :type phase: float