S. L. Grimm, B.-O. Demory, M. Gillon, C. Dorn, E. Agol, A. Burdanov, L. Delrez, M. Sestovic, A. H. M. J. Triaud, M. Turbet, É. Bolmont, A. Caldas, J. de Wit, E. Jehin, J. Leconte, S. N. Raymond, V. Van Grootel, A. J. Burgasser, S. Carey, D. Fabrycky, K. Heng, D. M. Hernandez, J. G. Ingalls, S. Lederer, F. Selsis, and D. Queloz. The nature of the TRAPPIST-1 exoplanets. Astronomy Astrophysics, 613:A68, 2018. [ bib | DOI | arXiv | ADS link ]
Context. The TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf star. As such, it represents a remarkable setting to study the formation and evolution of terrestrial planets that formed in the same protoplanetary disk. While the sizes of the TRAPPIST-1 planets are all known to better than 5% precision, their densities have significant uncertainties (between 28% and 95%) because of poor constraints on the planet's masses. <BR /> Aims: The goal of this paper is to improve our knowledge of the TRAPPIST-1 planetary masses and densities using transit-timing variations (TTVs). The complexity of the TTV inversion problem is known to be particularly acute in multi-planetary systems (convergence issues, degeneracies and size of the parameter space), especially for resonant chain systems such as TRAPPIST-1. <BR /> Methods: To overcome these challenges, we have used a novel method that employs a genetic algorithm coupled to a full N-body integrator that we applied to a set of 284 individual transit timings. This approach enables us to efficiently explore the parameter space and to derive reliable masses and densities from TTVs for all seven planets. <BR /> Results: Our new masses result in a five- to eight-fold improvement on the planetary density uncertainties, with precisions ranging from 5% to 12%. These updated values provide new insights into the bulk structure of the TRAPPIST-1 planets. We find that TRAPPIST-1 c and e likely have largely rocky interiors, while planets b, d, f, g, and h require envelopes of volatiles in the form of thick atmospheres, oceans, or ice, in most cases with water mass fractions less than 5%.
J. Leconte. Continuous reorientation of synchronous terrestrial planets due to mantle convection. Nature Geoscience, 11:168-172, 2018. [ bib | DOI | arXiv | ADS link ]
Many known rocky exoplanets are thought to have been spun down by tidal interactions to a state of synchronous rotation, in which a planet's period of rotation is equal to that of its orbit around its host star. Investigations into atmospheric and surface processes occurring on such exoplanets thus commonly assume that day and night sides are fixed with respect to the surface over geological timescales. Here we use an analytical model to show that true polar wanderwhere a planetary body's spin axis shifts relative to its surface because of changes in mass distributioncan continuously reorient a synchronous rocky exoplanet. As occurs on Earth, we find that even weak mantle convection in a rocky exoplanet can produce density heterogeneities within the mantle sufficient to reorient the planet. Moreover, we show that this reorientation is made very efficient by the slower rotation rate of a synchronous planet when compared with Earth, which limits the stabilizing effect of rotational and tidal deformations. Furthermore, a relatively weak lithosphere limits its ability to support remnant loads and stabilize against reorientation. Although uncertainties exist regarding the mantle and lithospheric evolution of these worlds, we suggest that the axes of smallest and largest moment of inertia of synchronous exoplanets with active mantle convection change continuously over time, but remain closely aligned with the star-planet and orbital axes, respectively.
J. Leconte. Why Compositional Convection Cannot Explain Substellar Objects Sharp Spectral-type Transitions. Astrophysical Journal, 853:L30, 2018. [ bib | DOI | arXiv | ADS link ]
As brown dwarfs and young giant planets cool down, they are known to experience various chemical transitionsfor example, from {CO} rich L-dwarfs to methane rich T-dwarfs. Those chemical transitions are accompanied by spectral transitions with sharpness that cannot be explained by chemistry alone. In a series of articles, Tremblin et al. proposed that some of the yet-unexplained features associated with these transitions could be explained by a reduction of the thermal gradient near the photosphere. To explain, in turn, this more isothermal profile, they invoke the presence of an instability analogous to fingering convectioncompositional convectiontriggered by the change in mean molecular weight of the gas due to the chemical transitions mentioned above. In this Letter, we use existing arguments to demonstrate that any turbulent transport, if present, would in fact increase the thermal gradient. This misinterpretation comes from the fact that turbulence mixes/homogenizes entropy (potential temperature) instead of temperature. So, while increasing transport, turbulence in an initially stratified atmosphere actually carries energy downward, whether it is due to fingering or any other type of compositional convection. These processes therefore cannot explain the features observed along the aforementioned transitions by reducing the thermal gradient in the atmosphere of substellar objects. Understanding the microphysical and dynamical properties of clouds at these transitions thus probably remains our best way forward.
T. Cavalié, O. Venot, F. Selsis, F. Hersant, P. Hartogh, and J. Leconte. Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: How convection inhibition can affect the derivation of deep oxygen abundances. Icarus, 291:1-16, 2017. [ bib | DOI | arXiv | ADS link ]
Thermochemical models have been used in the past to constrain the deep oxygen abundance in the gas and ice giant planets from tropospheric CO spectroscopic measurements. Knowing the oxygen abundance of these planets is a key to better understand their formation. These models have widely used dry and/or moist adiabats to extrapolate temperatures from the measured values in the upper troposphere down to the level where the thermochemical equilibrium between H2O and CO is established. The mean molecular mass gradient produced by the condensation of H2O stabilizes the atmosphere against convection and results in a vertical thermal profile and H2O distribution that departs significantly from previous estimates. We revisit O/H estimates using an atmospheric structure that accounts for the inhibition of the convection by condensation. We use a thermochemical network and the latest observations of CO in Uranus and Neptune to calculate the internal oxygen enrichment required to satisfy both these new estimates of the thermal profile and the observations. We also present the current limitations of such modeling.
J. Leconte, F. Selsis, F. Hersant, and T. Guillot. Condensation-inhibited convection in hydrogen-rich atmospheres . Stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Neptune. Astronomy Astrophysics, 598:A98, 2017. [ bib | DOI | arXiv | ADS link ]
In an atmosphere, a cloud condensation region is characterized by a strong vertical gradient in the abundance of the related condensing species. On Earth, the ensuing gradient of mean molecular weight has relatively few dynamical consequences because N2 is heavier than water vapor, so that only the release of latent heat significantly impacts convection. On the contrary, in a hydrogen dominated atmosphere (e.g., giant planets), all condensing species are significantly heavier than the background gas. This can stabilize the atmosphere against convection near a cloud deck if the enrichment in the given species exceeds a critical threshold. This raises two questions. What is transporting energy in such a stabilized layer, and how affected can the thermal profile of giant planets be? To answer these questions, we first carry out a linear analysis of the convective and double-diffusive instabilities in a condensable medium showing that an efficient condensation can suppress double-diffusive convection. This suggests that a stable radiative layer can form near a cloud condensation level, leading to an increase in the temperature of the deep adiabat. Then, we investigate the impact of the condensation of the most abundant species (water) with a steady-state atmosphere model. Compared to standard models, the temperature increase can reach several hundred degrees at the quenching depth of key chemical tracers. Overall, this effect could have many implications for our understanding of the dynamical and chemical state of the atmosphere of giant planets, for their future observations (with Juno for example), and for their internal evolution.
A. Chiavassa, A. Caldas, F. Selsis, J. Leconte, P. Von Paris, P. Bordé, Z. Magic, R. Collet, and M. Asplund. Measuring stellar granulation during planet transits. Astronomy Astrophysics, 597:A94, 2017. [ bib | DOI | arXiv | ADS link ]
Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. <BR /> Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. <BR /> Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. <BR /> Results: We identified two types of granulation noise that act simultaneously during the planet transit: (I) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (II) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the planet radius (up to 0.90% and 0.47% for terrestrial and gaseous planets, respectively). We also showed that larger (or smaller) orbital inclination angles with respect to values corresponding to transit at the stellar center display a shallower transit depth and longer ingress and egress times, but also granulation fluctuations that are correlated to the center-to-limb variation: they increase (or decrease) the value of the inclination, which amplifies the fluctuations. The granulation noise appears to be correlated among the different wavelength ranges either in the visible or in the infrared regions. <BR /> Conclusions: The prospects for planet detection and characterization with transiting methods are excellent with access to large amounts of data for stars. The granulation has to be considered as an intrinsic uncertainty (as a result of stellar variability) on the precise measurements of exoplanet transits of planets. The full characterization of the granulation is essential for determining the degree of uncertainty on the planet parameters. In this context, the use of 3D RHD simulations is important to measure the convection-related fluctuations. This can be achieved by performing precise and continuous observations of stellar photometry and radial velocity, as we explained with RHD simulations, before, after, and during the transit periods.
G. Tinetti, P. Drossart, P. Eccleston, P. Hartogh, K. Isaak, M. Linder, C. Lovis, G. Micela, M. Ollivier, L. Puig, I. Ribas, I. Snellen, B. Swinyard, F. Allard, J. Barstow, J. Cho, A. Coustenis, C. Cockell, A. Correia, L. Decin, R. de Kok, P. Deroo, T. Encrenaz, F. Forget, A. Glasse, C. Griffith, T. Guillot, T. Koskinen, H. Lammer, J. Leconte, P. Maxted, I. Mueller-Wodarg, R. Nelson, C. North, E. Pallé, I. Pagano, G. Piccioni, D. Pinfield, F. Selsis, A. Sozzetti, L. Stixrude, J. Tennyson, D. Turrini, M. Zapatero-Osorio, J.-P. Beaulieu, D. Grodent, M. Guedel, D. Luz, H. U. Nørgaard-Nielsen, T. Ray, H. Rickman, A. Selig, M. Swain, M. Banaszkiewicz, M. Barlow, N. Bowles, G. Branduardi-Raymont, V. C. du Foresto, J.-C. Gerard, L. Gizon, A. Hornstrup, C. Jarchow, F. Kerschbaum, G. Kovacs, P.-O. Lagage, T. Lim, M. Lopez-Morales, G. Malaguti, E. Pace, E. Pascale, B. Vandenbussche, G. Wright, G. Ramos Zapata, A. Adriani, R. Azzollini, A. Balado, I. Bryson, R. Burston, J. Colomé, M. Crook, A. Di Giorgio, M. Griffin, R. Hoogeveen, R. Ottensamer, R. Irshad, K. Middleton, G. Morgante, F. Pinsard, M. Rataj, J.-M. Reess, G. Savini, J.-R. Schrader, R. Stamper, B. Winter, L. Abe, M. Abreu, N. Achilleos, P. Ade, V. Adybekian, L. Affer, C. Agnor, M. Agundez, C. Alard, J. Alcala, C. Allende Prieto, F. J. Alonso Floriano, F. Altieri, C. A. Alvarez Iglesias, P. Amado, A. Andersen, A. Aylward, C. Baffa, G. Bakos, P. Ballerini, M. Banaszkiewicz, R. J. Barber, D. Barrado, E. J. Barton, V. Batista, G. Bellucci, J. A. Belmonte Avilés, D. Berry, B. Bézard, D. Biondi, M. Blecka, I. Boisse, B. Bonfond, P. Bordé, P. Börner, H. Bouy, L. Brown, L. Buchhave, J. Budaj, A. Bulgarelli, M. Burleigh, A. Cabral, M. T. Capria, A. Cassan, C. Cavarroc, C. Cecchi-Pestellini, R. Cerulli, J. Chadney, S. Chamberlain, S. Charnoz, N. Christian Jessen, A. Ciaravella, A. Claret, R. Claudi, A. Coates, R. Cole, A. Collura, D. Cordier, E. Covino, C. Danielski, M. Damasso, H. J. Deeg, E. Delgado-Mena, C. Del Vecchio, O. Demangeon, A. De Sio, J. De Wit, M. Dobrijévic, P. Doel, C. Dominic, E. Dorfi, S. Eales, C. Eiroa, M. Espinoza Contreras, M. Esposito, V. Eymet, N. Fabrizio, M. Fernández, B. Femenía Castella, P. Figueira, G. Filacchione, L. Fletcher, M. Focardi, S. Fossey, P. Fouqué, J. Frith, M. Galand, L. Gambicorti, P. Gaulme, R. J. García López, A. Garcia-Piquer, W. Gear, J.-C. Gerard, L. Gesa, E. Giani, F. Gianotti, M. Gillon, E. Giro, M. Giuranna, H. Gomez, I. Gomez-Leal, J. Gonzalez Hernandez, B. González Merino, R. Graczyk, D. Grassi, J. Guardia, P. Guio, J. Gustin, P. Hargrave, J. Haigh, E. Hébrard, U. Heiter, R. L. Heredero, E. Herrero, F. Hersant, D. Heyrovsky, M. Hollis, B. Hubert, R. Hueso, G. Israelian, N. Iro, P. Irwin, S. Jacquemoud, G. Jones, H. Jones, K. Justtanont, T. Kehoe, F. Kerschbaum, E. Kerins, P. Kervella, D. Kipping, T. Koskinen, N. Krupp, O. Lahav, B. Laken, N. Lanza, E. Lellouch, G. Leto, J. Licandro Goldaracena, C. Lithgow-Bertelloni, S. J. Liu, U. Lo Cicero, N. Lodieu, P. Lognonné, M. Lopez-Puertas, M. A. Lopez-Valverde, I. Lundgaard Rasmussen, A. Luntzer, P. Machado, C. MacTavish, A. Maggio, J.-P. Maillard, W. Magnes, J. Maldonado, U. Mall, J.-B. Marquette, P. Mauskopf, F. Massi, A.-S. Maurin, A. Medvedev, C. Michaut, P. Miles-Paez, M. Montalto, P. Montañés Rodríguez, M. Monteiro, D. Montes, H. Morais, J. C. Morales, M. Morales-Calderón, G. Morello, A. Moro Martín, J. Moses, A. Moya Bedon, F. Murgas Alcaino, E. Oliva, G. Orton, F. Palla, M. Pancrazzi, E. Pantin, V. Parmentier, H. Parviainen, K. Y. Peña Ramírez, J. Peralta, S. Perez-Hoyos, R. Petrov, S. Pezzuto, R. Pietrzak, E. Pilat-Lohinger, N. Piskunov, R. Prinja, L. Prisinzano, I. Polichtchouk, E. Poretti, A. Radioti, A. A. Ramos, T. Rank-Lüftinger, P. Read, K. Readorn, R. Rebolo López, J. Rebordão, M. Rengel, L. Rezac, M. Rocchetto, F. Rodler, V. J. Sánchez Béjar, A. Sanchez Lavega, E. Sanromá, N. Santos, J. Sanz Forcada, G. Scandariato, F.-X. Schmider, A. Scholz, S. Scuderi, J. Sethenadh, S. Shore, A. Showman, B. Sicardy, P. Sitek, A. Smith, L. Soret, S. Sousa, A. Stiepen, M. Stolarski, G. Strazzulla, H. M. Tabernero, P. Tanga, M. Tecsa, J. Temple, L. Terenzi, M. Tessenyi, L. Testi, S. Thompson, H. Thrastarson, B. W. Tingley, M. Trifoglio, J. Martín Torres, A. Tozzi, D. Turrini, R. Varley, F. Vakili, M. de Val-Borro, M. L. Valdivieso, O. Venot, E. Villaver, S. Vinatier, S. Viti, I. Waldmann, D. Waltham, D. Ward-Thompson, R. Waters, C. Watkins, D. Watson, P. Wawer, A. Wawrzaszk, G. White, T. Widemann, W. Winek, T. Wiśniowski, R. Yelle, Y. Yung, and S. N. Yurchenko. The EChO science case. Experimental Astronomy, 40:329-391, 2015. [ bib | DOI | arXiv | ADS link ]
The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptuneall unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10-4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ˜ 300 for wavelengths less than 5 μm and R ˜ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
F. Forget and J. Leconte. Possible climates on terrestrial exoplanets. Philosophical Transactions of the Royal Society of London Series A, 372:20130084-20130084, 2014. [ bib | DOI | arXiv | ADS link ]
What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance to optimize future telescopic observations, or to assess the probability of habitable worlds. To first order, climate primarily depends on 1) The atmospheric composition and the volatile inventory; 2) The incident stellar flux; 3) The tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes which are difficult to model: origins of volatile, atmospheric escape, geochemistry, photochemistry. We discuss physical constraints which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using Global Climate Models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components like a “dynamical core”, a radiative transfer solver, a parametrisation of subgrid-scale turbulence and convection, a thermal ground model, and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive destabilizing feedbacks (such as runaway glaciations and runaway greenhouse effect). They can drive planets with very similar forcing and volatile inventory to completely different states.
J. Leconte and G. Chabrier. Layered convection as the origin of Saturn's luminosity anomaly. Nature Geoscience, 6:347-350, 2013. [ bib | DOI | arXiv | ADS link ]
As the giant planets of our Solar System continue to cool and contract, they radiate more energy than they receive from the Sun. A giant planet's cooling rate, luminosity and temperature at a given age can be determined using the first and second principles of thermodynamics. Measurements of Saturn's infrared luminosity, however, reveal that Saturn is significantly brighter than predicted for its age. This excess luminosity has been attributed to the immiscibility of helium in Saturn's hydrogen-rich envelope, which leads to rains of helium-rich droplets. Existing calculations of Saturn's evolution, however, suggest that the energy released by helium rains might be insufficient to resolve the luminosity puzzle. Here we demonstrate, using semi-analytical models of planetary thermal evolution, that the cooling of Saturn's interior is significantly slower in the presence of layered convection generated-like in Earth's oceans-by a compositional gradient. We find that layered convection can explain Saturn's present luminosity for a wide range of initial energy configurations without invoking any additional energy source. Our findings suggest that the interior structure, composition and thermal evolution of giant planets in our Solar System and beyond may be more complex than the conventional approximation of giant planets as homogeneous adiabatic bodies.
J. Leconte and G. Chabrier. A new vision of giant planet interiors: Impact of double diffusive convection. Astronomy Astrophysics, 540:A20, 2012. [ bib | DOI | arXiv | ADS link ]
While conventional interior models for Jupiter and Saturn are based on the simplistic assumption of a solid core surrounded by a homogeneous gaseous envelope, we have derived new models with an inhomogeneous distribution of heavy elements within these planets. Such a compositional gradient hampers large-scale convection that turns into double-diffusive convection, yielding an inner thermal profile that departs from the traditionally assumed adiabatic interior and affecting these planets heat content and cooling history. To address this problem, we have developed an analytical approach to describe layered double-diffusive convection and apply this formalism to solar system gaseous giant planet interiors. These models satisfy all observational constraints and yield values for the metal enrichment of our gaseous giants that are up to 30% to 60% higher than previously thought. The models also constrain the size of the convective layers within the planets. Because the heavy elements tend to be redistributed within the gaseous envelope, the models predict smaller than usual central cores inside Saturn and Jupiter, with possibly no core for the latter. These models open a new window and raise new challenges to our understanding of the internal structure of giant (solar and extrasolar) planets, in particular on how to determine their heavy material content, a key diagnostic for planet formation theories.
E. Bolmont, S. N. Raymond, and J. Leconte. Tidal evolution of planets around brown dwarfs. Astronomy Astrophysics, 535:A94, 2011. [ bib | DOI | arXiv | ADS link ]
Context. The tidal evolution of planets orbiting brown dwarfs (BDs) presents an interesting case study because BDs' terrestrial planet forming region is located extremely close-in. In fact, the habitable zones of BDs range from roughly 0.001 to 0.03 AU and for the lowest-mass BDs are located interior to the Roche limit. <BR /> Aims: In contrast with stars, BDs spin up as they age. Thus, the corotation distance moves inward. This has important implications for the tidal evolution of planets around BDs. <BR /> Methods: We used a standard equilibrium tidal model to compute the orbital evolution of a large ensemble of planet-BD systems. We tested the effect of numerous parameters such as the initial semi-major axis and eccentricity, the rotation period of the BD, the masses of both the BD and planet, and the tidal dissipation factors. <BR /> Results: We find that all planets that form at or beyond the corotation distance and with initial eccentricities smaller than ˜0.1 are repelled from the BD. Some planets initially interior to corotation can survive if their inward tidal evolution is slower than the BD's spin evolution, but most initially close-in planets fall onto the BD. <BR /> Conclusions: We find that the most important parameter for the tidal evolution is the initial orbital distance with respect to the corotation distance. Some planets can survive in the habitable zone for Gyr timescales, although in many cases the habitable zone moves inward past the planet's orbit in just tens to hundreds of Myr. Surviving planets can have orbital periods of less than 10 days (as small as 10 h), so they could be observable by transit.
J. Leconte, G. Chabrier, I. Baraffe, and B. Levrard. Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astronomy Astrophysics, 516:A64, 2010. [ bib | DOI | arXiv | ADS link ]
We present the consistent evolution of short-period exoplanets coupling the tidal and gravothermal evolution of the planet. Contrarily to previous similar studies, our calculations are based on the complete tidal evolution equations of the Hut (1981) model, valid at any order in eccentricity, obliquity and spin. We demonstrate both analytically and numerically that except if the system was formed with a nearly circular orbit (e 0.2), consistently solving the complete tidal equations is mandatory to derive correct tidal evolution histories. We show that calculations based on tidal models truncated at 2nd order in eccentricity, as done in all previous studies, lead to quantitatively and sometimes even qualitatively erroneous tidal evolutions. As a consequence, tidal energy dissipation rates are severely underestimated in all these calculations and the characteristic timescales for the various orbital parameters evolutions can be wrong by up to three orders of magnitude. These discrepancies can by no means be justified by invoking the uncertainty in the tidal quality factors. Based on these complete, consistent calculations, we revisit the viability of the tidal heating hypothesis to explain the anomalously large radius of transiting giant planets. We show that even though tidal dissipation does provide a substantial contribution to the planet's heat budget and can explain some of the moderately bloated hot-Jupiters, this mechanism can not explain alone the properties of the most inflated objects, including HD 209 458 b. Indeed, solving the complete tidal equations shows that enhanced tidal dissipation and thus orbit circularization occur too early during the planet's evolution to provide enough extra energy at the present epoch. In that case either a third, so far undetected, low-mass companion must be present to keep exciting the eccentricity of the giant planet, or other mechanisms - stellar irradiation induced surface winds dissipating in the planet's tidal bulges and thus reaching the convective layers, inefficient flux transport by convection in the planet's interior - must be invoked, together with tidal dissipation, to provide all the pieces of the abnormally large exoplanet puzzle.
J. Leconte, I. Baraffe, G. Chabrier, T. Barman, and B. Levrard. Structure and evolution of the first CoRoT exoplanets: probing the brown dwarf/planet overlapping mass regime. Astronomy Astrophysics, 506:385-389, 2009. [ bib | DOI | arXiv | ADS link ]
We present detailed structure and evolution calculations for the first transiting extrasolar planets discovered by the space-based CoRoT mission. Comparisons between theoretical and observed radii provide information on the internal composition of the CoRoT objects. We distinguish three different categories of planets emerging from these discoveries and from previous ground-based surveys: (i) planets explained by standard planetary models including irradiation; (ii) abnormally bloated planets; and (iii) massive objects belonging to the overlapping mass regime between planets and brown dwarfs. For the second category, we show that tidal heating can explain the relevant CoRoT objects, providing non-zero eccentricities. We stress that the usual assumption of a quick circularization of the orbit by tides, as usually done in transit light curve analysis, is not justified a priori, as suggested recently by Levrard et al. (2009), and that eccentricity analysis should be carefully redone for some observations. Finally, special attention is devoted to CoRoT-3b and to the identification of its very nature: giant planet or brown dwarf? The radius determination of this object confirms the theoretical mass-radius predictions for gaseous bodies in the substellar regime but, given the present observational uncertainties, does not allow an unambiguous identification of its very nature. This opens the avenue, however, to an observational identification of these two distinct astrophysical populations, brown dwarfs and giant planets, in their overlapping mass range, as done for the case of the 8 Jupiter-mass object Hat-P-2b. According to the presently published error bars for the radius determination and to our present theoretical description of planet structure and evolution, the high mean density of this object requires a substantial metal enrichment of the interior and is inconsistent at about the 2-sigma limit with the expected radius of a solar-metallicity brown dwarf. Within the aforementioned observational and theoretical determinations, this allows a clear identification of its planetary nature, suggesting that planets may form up to at least 8 Jupiter masses.