2015 .

J. Leconte, F. Forget, and H. Lammer. On the (anticipated) diversity of terrestrial planet atmospheres. Experimental Astronomy, 40:449-467, 2015. [ bib | DOI | PDF version | ADS link ]

On our way toward the characterization of smaller and more temperate planets, missions dedicated to the spectroscopic observation of exoplanets will teach us about the wide diversity of classes of planetary atmospheres, many of them probably having no equivalent in the Solar System. But what kind of atmospheres can we expect? To start answering this question, many theoretical studies have tried to understand and model the various processes controlling the formation and evolution of planetary atmospheres, with some success in the Solar System. Here, we shortly review these processes and we try to give an idea of the various type of atmospheres that these processes can create. As will be made clear, current atmosphere evolution models have many shortcomings yet, and need heavy calibrations. With that in mind, we will thus discuss how observations with a mission similar to EChO would help us unravel the link between a planet's environment and its atmosphere.

G. Tinetti, P. Drossart, P. Eccleston, P. Hartogh, K. Isaak, M. Linder, C. Lovis, G. Micela, M. Ollivier, L. Puig, I. Ribas, I. Snellen, B. Swinyard, F. Allard, J. Barstow, J. Cho, A. Coustenis, C. Cockell, A. Correia, L. Decin, R. de Kok, P. Deroo, T. Encrenaz, F. Forget, A. Glasse, C. Griffith, T. Guillot, T. Koskinen, H. Lammer, J. Leconte, P. Maxted, I. Mueller-Wodarg, R. Nelson, C. North, E. Pallé, I. Pagano, G. Piccioni, D. Pinfield, F. Selsis, A. Sozzetti, L. Stixrude, J. Tennyson, D. Turrini, M. Zapatero-Osorio, J.-P. Beaulieu, D. Grodent, M. Guedel, D. Luz, H. U. Nørgaard-Nielsen, T. Ray, H. Rickman, A. Selig, M. Swain, M. Banaszkiewicz, M. Barlow, N. Bowles, G. Branduardi-Raymont, V. C. du Foresto, J.-C. Gerard, L. Gizon, A. Hornstrup, C. Jarchow, F. Kerschbaum, G. Kovacs, P.-O. Lagage, T. Lim, M. Lopez-Morales, G. Malaguti, E. Pace, E. Pascale, B. Vandenbussche, G. Wright, G. Ramos Zapata, A. Adriani, R. Azzollini, A. Balado, I. Bryson, R. Burston, J. Colomé, M. Crook, A. Di Giorgio, M. Griffin, R. Hoogeveen, R. Ottensamer, R. Irshad, K. Middleton, G. Morgante, F. Pinsard, M. Rataj, J.-M. Reess, G. Savini, J.-R. Schrader, R. Stamper, B. Winter, L. Abe, M. Abreu, N. Achilleos, P. Ade, V. Adybekian, L. Affer, C. Agnor, M. Agundez, C. Alard, J. Alcala, C. Allende Prieto, F. J. Alonso Floriano, F. Altieri, C. A. Alvarez Iglesias, P. Amado, A. Andersen, A. Aylward, C. Baffa, G. Bakos, P. Ballerini, M. Banaszkiewicz, R. J. Barber, D. Barrado, E. J. Barton, V. Batista, G. Bellucci, J. A. Belmonte Avilés, D. Berry, B. Bézard, D. Biondi, M. Blecka, I. Boisse, B. Bonfond, P. Bordé, P. Börner, H. Bouy, L. Brown, L. Buchhave, J. Budaj, A. Bulgarelli, M. Burleigh, A. Cabral, M. T. Capria, A. Cassan, C. Cavarroc, C. Cecchi-Pestellini, R. Cerulli, J. Chadney, S. Chamberlain, S. Charnoz, N. Christian Jessen, A. Ciaravella, A. Claret, R. Claudi, A. Coates, R. Cole, A. Collura, D. Cordier, E. Covino, C. Danielski, M. Damasso, H. J. Deeg, E. Delgado-Mena, C. Del Vecchio, O. Demangeon, A. De Sio, J. De Wit, M. Dobrijévic, P. Doel, C. Dominic, E. Dorfi, S. Eales, C. Eiroa, M. Espinoza Contreras, M. Esposito, V. Eymet, N. Fabrizio, M. Fernández, B. Femenía Castella, P. Figueira, G. Filacchione, L. Fletcher, M. Focardi, S. Fossey, P. Fouqué, J. Frith, M. Galand, L. Gambicorti, P. Gaulme, R. J. García López, A. Garcia-Piquer, W. Gear, J.-C. Gerard, L. Gesa, E. Giani, F. Gianotti, M. Gillon, E. Giro, M. Giuranna, H. Gomez, I. Gomez-Leal, J. Gonzalez Hernandez, B. González Merino, R. Graczyk, D. Grassi, J. Guardia, P. Guio, J. Gustin, P. Hargrave, J. Haigh, E. Hébrard, U. Heiter, R. L. Heredero, E. Herrero, F. Hersant, D. Heyrovsky, M. Hollis, B. Hubert, R. Hueso, G. Israelian, N. Iro, P. Irwin, S. Jacquemoud, G. Jones, H. Jones, K. Justtanont, T. Kehoe, F. Kerschbaum, E. Kerins, P. Kervella, D. Kipping, T. Koskinen, N. Krupp, O. Lahav, B. Laken, N. Lanza, E. Lellouch, G. Leto, J. Licandro Goldaracena, C. Lithgow-Bertelloni, S. J. Liu, U. Lo Cicero, N. Lodieu, P. Lognonné, M. Lopez-Puertas, M. A. Lopez-Valverde, I. Lundgaard Rasmussen, A. Luntzer, P. Machado, C. MacTavish, A. Maggio, J.-P. Maillard, W. Magnes, J. Maldonado, U. Mall, J.-B. Marquette, P. Mauskopf, F. Massi, A.-S. Maurin, A. Medvedev, C. Michaut, P. Miles-Paez, M. Montalto, P. Montañés Rodríguez, M. Monteiro, D. Montes, H. Morais, J. C. Morales, M. Morales-Calderón, G. Morello, A. Moro Martín, J. Moses, A. Moya Bedon, F. Murgas Alcaino, E. Oliva, G. Orton, F. Palla, M. Pancrazzi, E. Pantin, V. Parmentier, H. Parviainen, K. Y. Peña Ramírez, J. Peralta, S. Perez-Hoyos, R. Petrov, S. Pezzuto, R. Pietrzak, E. Pilat-Lohinger, N. Piskunov, R. Prinja, L. Prisinzano, I. Polichtchouk, E. Poretti, A. Radioti, A. A. Ramos, T. Rank-Lüftinger, P. Read, K. Readorn, R. Rebolo López, J. Rebordão, M. Rengel, L. Rezac, M. Rocchetto, F. Rodler, V. J. Sánchez Béjar, A. Sanchez Lavega, E. Sanromá, N. Santos, J. Sanz Forcada, G. Scandariato, F.-X. Schmider, A. Scholz, S. Scuderi, J. Sethenadh, S. Shore, A. Showman, B. Sicardy, P. Sitek, A. Smith, L. Soret, S. Sousa, A. Stiepen, M. Stolarski, G. Strazzulla, H. M. Tabernero, P. Tanga, M. Tecsa, J. Temple, L. Terenzi, M. Tessenyi, L. Testi, S. Thompson, H. Thrastarson, B. W. Tingley, M. Trifoglio, J. Martín Torres, A. Tozzi, D. Turrini, R. Varley, F. Vakili, M. de Val-Borro, M. L. Valdivieso, O. Venot, E. Villaver, S. Vinatier, S. Viti, I. Waldmann, D. Waltham, D. Ward-Thompson, R. Waters, C. Watkins, D. Watson, P. Wawer, A. Wawrzaszk, G. White, T. Widemann, W. Winek, T. Wiśniowski, R. Yelle, Y. Yung, and S. N. Yurchenko. The EChO science case. Experimental Astronomy, 40:329-391, 2015. [ bib | DOI | arXiv | PDF version | ADS link ]

The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptuneall unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10-4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ˜ 300 for wavelengths less than 5 μm and R ˜ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.

B. Charnay, V. Meadows, A. Misra, J. Leconte, and G. Arney. 3D Modeling of GJ1214bs Atmosphere: Formation of Inhomogeneous High Clouds and Observational Implications. Astrophysical Journal, 813:L1, 2015. [ bib | DOI | arXiv | PDF version | ADS link ]

The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4-0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths 3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.

B. Charnay, V. Meadows, and J. Leconte. 3D Modeling of GJ1214b's Atmosphere: Vertical Mixing Driven by an Anti-Hadley Circulation. Astrophysical Journal, 813:15, 2015. [ bib | DOI | arXiv | PDF version | ADS link ]

GJ1214b is a warm sub-Neptune transiting in front of a nearby M dwarf star. Recent observations indicate the presence of high and thick clouds or haze whose presence requires strong atmospheric mixing. In order to understand the transport and distribution of such clouds/haze, we study the atmospheric circulation and the vertical mixing of GJ1214b with a 3D General Circulation Model for cloud-free hydrogen-dominated atmospheres (metallicity of 1, 10, and 100 times the solar value) and for a water-dominated atmosphere. We analyze the effect of the atmospheric metallicity on the thermal structure and zonal winds. We also analyze the zonal mean meridional circulation and show that it corresponds to an anti-Hadley circulation in most of the atmosphere with upwelling at mid-latitude and downwelling at the equator on average. This circulation must be present on a large range of synchronously rotating exoplanets with a strong impact on cloud formation and distribution. Using simple tracers, we show that vertical winds on GJ1214b can be strong enough to loft micrometric particles and that the anti-Hadley circulation leads to a minimum of tracers at the equator. We find that the strength of the vertical mixing increases with metallicity. We derive 1D equivalent eddy diffusion coefficients and find simple parametrizations from {K}zz
\=7× {10}2× {P}bar
\-0.4 {{{m}}}2 {{{s}}}-1 for solar metallicity to {K}zz
\=3× {10}3× {P}bar
\-0.4 {{{m}}}2 {{{s}}}-1 for the 100× solar metallicity. These values should favor an efficient formation of photochemical haze in the upper atmosphere of GJ1214b.

E. Bolmont, S. N. Raymond, J. Leconte, F. Hersant, and A. C. M. Correia. Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62. Astronomy Astrophysics, 583:A116, 2015. [ bib | DOI | arXiv | PDF version | ADS link ]

A large proportion of observed planetary systems contain several planets in a compact orbital configuration, and often harbor at least one close-in object. These systems are then most likely tidally evolving. We investigate how the effects of planet-planet interactions influence the tidal evolution of planets. We introduce for that purpose a new open-source addition to the MercuryN-body code, Mercury-T, which takes into account tides, general relativity and the effect of rotation-induced flattening in order to simulate the dynamical and tidal evolution of multi-planet systems. It uses a standard equilibrium tidal model, the constant time lag model. Besides, the evolution of the radius of several host bodies has been implemented (brown dwarfs, M-dwarfs of mass 0.1 M&sun;, Sun-like stars, Jupiter). We validate the new code by comparing its output for one-planet systems to the secular equations results. We find that this code does respect the conservation of total angular momentum. We applied this new tool to the planetary system Kepler-62. We find that tides influence the stability of the system in some cases. We also show that while the four inner planets of the systems are likely to have slow rotation rates and small obliquities, the fifth planet could have a fast rotation rate and a high obliquity. This means that the two habitable zone planets of this system, Kepler-62e ad f are likely to have very different climate features, and this of course would influence their potential at hosting surface liquid water.

The code is only available at the CDS via anonymous ftp to <A href=“http://cdsarc.u-strasbg.fr”>http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href=“http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A116”>http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A116</A>

J. Leconte, H. Wu, K. Menou, and N. Murray. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science, 347:632-635, 2015. [ bib | DOI | arXiv | PDF version | ADS link ]

Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ˜0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere.