Based on the material delivered at several summer schools, this book is the first comprehensive textbook at the graduate level encompassing all aspects associated with the emerging field of astrobiology. Volume I gathers a first set of extensive lectures that cover a broad range of topics, from the formation of the solar system to the quest for the most primitive life forms that emerged on the early earth.
Contents

General Introduction

From the Origin of Life on Earth to Life in the Universe

André Brack ... 1

1. The Search for Traces of Primitive Life and Other Imprints 3
 1.1 Microfossils .. 3
 1.2 Oldest Sedimentary Rocks .. 4
 1.3 One-handedness of Life .. 4

2. Reconstructing Life in a Test Tube 5
 2.1 Primitive Earth Atmosphere 6
 2.2 Organic Synthesis .. 6
 2.3 Delivery of Organics by Comets and Meteorites 7
 2.4 Simulation Experiments .. 9
 2.5 Recreating the Chemistry of Primitive Life 10

3. Search for Extraterrestrial Life 11
 3.1 The Diversity of Bacterial Life as a Reference for Extraterrestrial Life .. 11
 3.2 The Search for Life in the Solar System 12
 3.3 The Search for Life Beyond the Solar System 15
 3.4 Panspermia, Interplanetary Transfer of Life 17

4. Conclusion ... 18

References ... 20

Part I The Early Earth and Other Cosmic Habitats for Life

First Part Introduction ... 27

1. The Formation of Solar-type Stars:
 Boundary Conditions for the Origin of Life?

Thierry Montmerle ... 29

1.1 The Ancestors of Solar-like Stars 29

1.2 “Young Stellar Objects” and Solar-type Protostars 30
 1.2.1 Molecular Clouds and Molecular Outflows 30
 1.2.2 T Tauri Stars ... 31
 1.2.3 Protostars .. 32
1.3 Stellar Evolution During the First Million Years ... 34
 1.3.1 Protostars .. 34
 1.3.2 T Tauri Stars .. 36
1.4 Importance for the Forming Solar System ... 37
 1.4.1 Circumstellar Disks .. 37
 1.4.2 High-energy Phenomena: X-ray Emission ... 39
1.5 X-ray Irradiation: Ionization and Feedback Effects on Circumstellar Disks 44
1.6 Disk Irradiation by Energetic Particles and "Extinct Radioactivities" in Meteorites . . 46
1.7 The Origin of the Sun, and the Origin of Life ... 49
References ... 57

2 Chronology of Solar System Formation
Jean-Marc Petit, Alessandro Morbidelli ... 61
 2.1 Origin of the Proto-solar Nebula ... 62
 2.2 From Micron-size to Kilometer-size Bodies ... 63
 2.3 From Planetesimals to Planets ... 65
 2.3.1 Formation of Planetary Embryos ... 65
 2.3.2 Formation of the Giant Planets .. 68
 2.3.3 Formation of the Terrestrial Planets and Primordial Sculpting of the Asteroid Belt . 69
 2.3.4 Origin of Water on Earth .. 72
 2.4 The Future ... 74
Appendix
 A: Chemical and Isotopic compositions ... 77
 B: Chronology from Radioactivity .. 77
References ... 80

3 The Origin and Evolution of the Oceans
Daniele L. Pinti ... 83
 3.1 Introduction .. 83
 3.2 The Origin of Water ... 84
 3.3 Formation of the Oceans: the Geological Record 90
 3.4 Formation of the Oceans: Chronology and Processes 92
 3.5 Chemical Composition of the Primitive Oceans 97
 3.5.1 Temperature .. 98
 3.5.2 The pH and the Redox State .. 99
 3.5.3 Salinity ... 102
 3.6 Conclusions ... 106
References ... 107
4 Genesis and Evolution of the Primitive Earth Continental Crust
Hervé Martin .. 113
4.1 Composition and Genesis of the Primitive Continental Crust .. 114
 4.1.1 Introduction ... 114
 4.1.2 Age of the Oldest Continental Crust 116
 4.1.3 Composition of the Early Continental Crust: Comparison with Modern Continental Crust 119
 4.1.4 Source of the Early Continental Crust 124
 4.1.5 Mechanisms of Continental Crust Genesis 126
 4.1.6 Test of the Model 129
 4.1.7 Discussion ... 132
 4.1.8 Summary – Conclusions 133
4.2 Evolution and Dynamic of the Primitive Continental Crust ... 135
 4.2.1 Introduction: The Archaean Specificity 135
 4.2.2 Continental Crust and Earth Cooling 137
 4.2.3 Archaean Tectonic 141
 4.2.4 Archaean Plate Tectonic? 144
 4.2.5 Specificity of Archaean Plate Tectonics 146
 4.2.6 The Future of Archaean Continental Crust: Crustal Recycling .. 148
4.3 Some Open Questions .. 149
 4.3.1 Episodic Crustal Growth 149
 4.3.2 Oceanic-crust Behaviour 152
 4.3.3 Archaean Mountains? 154
 4.3.4 Cool Early Earth and Late Heavy Bombardment 155
4.4 Main Conclusions .. 156
References ... 157

5 Thermal Evolution of the Earth During the First Billion Years
Christophe Sotin .. 165
5.1 Internal Structure and Dynamics of the Earth ... 165
 5.1.1 Description of the Different Layers 165
 5.1.2 Internal Dynamics of the Earth 169
5.2 Thermal Convection: the Driver of the Earth’s Internal Dynamics 174
 5.2.1 Basic Information About Thermal Convection 174
 5.2.2 Onset of Thermal Convection After Accretion 179
 5.2.3 Convection and Partial Melting 184
 5.2.4 Conclusion: a Look at Other Planets 186
5.3 The Earth’s Magnetic Field 187
 5.3.1 Characteristics of the Magnetic Field 187
6 The Geological Context for the Origin of Life and the Mineral Signatures of Fossil Life

Frances Westall

6.1 Geological Evolution of the Early Earth
6.1.1 Crust
6.1.2 Oceans and Atmospheres
6.1.3 Bolide Impacts and the Origin of Life/Early Life

6.2 Potential Early Habitats for Life

6.3 Early Archaean Fossil Record
6.3.1 The Isua Greenstone Belt
6.3.2 The Barberton and Pilbara Greenstone Belts
6.3.3 Inferences Regarding the Early Archaean Microbiota

6.4 The Fossilisation of Bacteria

6.5 Conclusions and Perspectives

References

7 Lake Vostok, Antarctica: Exploring a Subglacial Lake and Searching for Life in an Extreme Environment

Jean Robert Petit, Irina Alekhina, Sergey Bulat

7.1 Lake Vostok and Ice Core Data in a Nutshell
7.1.1 Generalities
7.1.2 Lake Vostok: Present Knowledge and Some Open Questions
7.1.3 Climate Record and Ice Chemical Properties
7.1.4 Accretion Ice
7.1.5 Lake Setting and Possible History of Lake Vostok
7.1.6 Ice–Water Equilibrium

7.2 Empirical Model for Water Cycle and Energy Balance
7.2.1 Underlying Concepts
7.2.2 Sketch of the Hypothetical Water-circulation Pattern
7.2.3 Energy Balance of the Lake and Water-renewal Time
7.2.4 Application to Heat Fluxes and Mass-balance Velocity

7.3 Some Implications of the Isotope Composition of Accreted Ice
7.3.1 Constraint on the Geographical Location of the Melting Area
7.3.2 The $\delta D-\delta^{18}O$ Relationship

7.4 Biological studies
7.4.1 Previous studies
7.4.2 Recent Studies
7.4.3 Hydrothermal Environment in Lake Vostok?
8 Comets: Potential Sources of Prebiotic Molecules for the Early Earth

Didier Despois, Hervé Cottin

8.1 General Description of Comets
8.1.1 The Cometary Nucleus
8.1.2 Comet Motion
8.1.3 Comet Reservoirs: Oort Cloud and Kuiper Belt
8.1.4 The Active Comet
8.1.5 Gas and Dust Production
8.1.6 Remote Activity, Outbursts and Split Comets
8.1.7 Nucleus Modelling: Outgassing and Internal Temperatures
8.1.8 Internal Temperature and the Case for Liquid Water

8.2 Chemical Composition of Comets as Deduced from Observations
8.2.1 Volatiles
8.2.2 Grains
8.2.3 Elemental and Isotopic Composition
8.2.4 Are All Comets Similar?

8.3 Laboratory Simulation of Cometary Matter
8.3.1 Experimental Simulations
8.3.2 Energy Deposition
8.3.3 Relevance and Importance of Laboratory Simulations

8.4 Origin and Evolution of Cometary Matter
8.4.1 Origin of Cometary Matter
8.4.2 Cometary Ices versus Interstellar Ices: the Facts
8.4.3 Models of Cometary Matter and Comet Nucleus Formation
8.4.4 Are Today's Comets Like Comets in the Early Solar System?

8.5 Delivery to the Earth
8.5.1 Shooting Stars (Meteors)
8.5.2 Overall Picture of Matter Delivery to the Earth
8.5.3 Delivery of elements and Water
8.5.4 Prebiotic Molecules from Comets?
8.5.5 Do Molecules Survive From Comets to the Earth?
8.5.6 Comparison of Comets with Other Likely Sources of Prebiotic Molecules
8.5.7 Chiral Molecules: from the Interstellar Medium to the Early Earth?

8.6 Ground-based and Space Exploration of Comets: New Developments

8.7 Conclusion

References
9 Comparative Planetology, Mars and Exobiology
Jean-Pierre Bibring .. 353
9.1 The Study of the Initial Conditions
of the Solar System Evolution ... 354
9.1.1 The Origin of Small Bodies 355
9.1.2 The Impact Rate .. 357
9.1.3 The Organic Content of Comets 358
9.2 Planetary Energy Sources ... 359
9.3 The Lunar Records of Solar System Evolution 361
9.4 Mars and Contemporary Comparative Planetology 364
9.4.1 The Global Mars Properties 364
9.4.2 The Major Mars Surface Units 366
9.4.3 The Evolution of the Mars Climate 370
9.4.4 Where Has the Nitrogen Gone? 373
9.4.5 The Martian Meteorites ... 374
9.4.6 The Present and Future Mars Exploration Programs 375
References ... 382

10 Spectroscopic Signatures of Life on Exoplanets –
The Darwin and TPF Missions
Franck Selsis, Alain Léger, Marc Ollivier 385
10.1 Ozone as a Biomarker ... 387
10.1.1 O_3 as a Tracer of O_2 .. 388
10.1.2 The Buildup of a Biogenic O_2-Rich Atmosphere 392
10.1.3 Abiotic Synthesis of O_2 and O_3 – “False-Positive” cases ... 394
10.1.4 Numerical Simulation of O_2 and O_3 Abiotic Synthesis ... 397
10.1.5 False Negatives .. 402
10.1.6 The Detection of an Oxygen-Rich Atmosphere
in the Reflected Spectrum ... 404
10.1.7 Biosignatures on Habitable Planets Around M-Stars? 406
10.2 Others Biomarkers .. 407
10.3 Temperature and Radius .. 409
10.4 Other Exo-/Astrobiological Aspects
of the Darwin/TPF Missions .. 415
10.5 Conclusion .. 416
Appendix: Elements Concerning the Habitable Zones 417
References ... 419

Part II From Prebiotic Chemistry to the Origin of Life on Earth

Second Part Introduction .. 427
1 A Rational Approach to the Origin of Life:
From Amphiphilic Molecules to Protocells. Some Plausible
Solutions, and Some Real Problems
Guy Ourisson, Yoichi Nakatană ... 429
1.1 From Amphiphilic Molecules to "Protocells"
by Understandable Processes. Self-Organisation
and Self-Complexification .. 429
1.2 Water and Self-Organisation of Amphiphiles 430
 1.2.1 The Structure of Liquid Water 430
 1.2.2 The Structure of Amphiphile-water Mixtures 430
1.3 Properties Ensuing from the Self-organisation
of Amphiphiles .. 433
 1.3.1 Extraction and Orientation 433
 1.3.2 Increased Concentration and Condensation 433
 1.3.3 Vectorial Properties 434
 1.3.4 Coating the Vesicles 435
 1.3.5 Vesicles and Nucleic Acids; Vesicles as Protocells 436
1.4 The Nature of the Primitive Amphiphiles 437
 1.4.1 The Modernity of N-Acyl Lipids 437
 1.4.2 The Archaeal Lipids and Their Synthesis 438
 1.4.3 The Terpenoids as Universal Metabolites 441
1.5 Some Remaining Problems 441
 1.5.1 The Problem of the Synthesis of Ingredients 441
 1.5.2 The Problem of Local Concentration 442
 1.5.3 The Problem of the Prevalence of Phosphates 442
 1.5.4 The Problem of Phosphorylation by Phosphoric Anhydrides 443
 1.5.5 The Problem of the C₅ Unit 444
 1.5.6 The Problem of the Cytoskeleton 444
References ... 444

2 Prebiotic Chemistry: Laboratory Experiments
and Planetary Observation
François Raulin, Patrice Coll, Rafael Navarro-González 449
2.1 Simulation Experiments and Photochemical Models 450
 2.1.1 An Historical View of Miller's Experiment
and the Development of a New Field: Prebiotic Chemistry 450
 2.1.2 An Overview of Experimental and Theoretical Data 451
 2.1.3 New Scenario for Prebiotic Chemistry 453
2.2 Elementary Prebiotic Chemistry in Aqueous Solution 454
 2.2.1 Prebiotic Chemistry of HCN:
 Strecker Reaction or Oligomerization (see Box 2.1) 454
 2.2.2 Prebiotic Chemistry of HCHO, Formose Reaction 457
 2.2.3 Prebiotic Chemistry of Tholins 458
2.3 Application of These Laboratory Experimental Data
to Space Studies ... 458
3 Chirality and the Origin of Homochirality

John Cronin, Jacques Reisse

3.1 Chirality: Basic Concepts ... 473
3.2 Reactivity of Chiral Molecules 478
3.3 Pasteur and the Discovery of Molecular Chirality 479
3.4 Crystals and Crystallization .. 481
3.5 Homochirality and Life .. 482
3.6 The Why and When of Homochirality 484
3.7 Origin of Homochirality
 and Spontaneous Symmetry Breaking 486
3.8 Origin of Homochirality and Parity Violation 489
3.9 Origin of Homochirality and Photochemistry 491
3.10 Amplification of Enantiomeric Excesses 493
 3.10.1 Introduction ... 493
 3.10.2 Kinetic Resolution 493
 3.10.3 Chiral Catalysis ... 495
 3.10.4 Asymmetric Autocatalysis: Theoretical Models ... 495
 3.10.5 Asymmetric Autocatalysis: Experimental Data .. 497
 3.10.6 On the Possibility to Amplifying Enantiomeric Excesses
 due to Parity Violation 499
3.11 Exogenous Origin of Homochirality 501
3.12 Hypothesis and Summary 504
3.13 Homochirality Analyses in the Solar System
 and Beyond .. 507

References ... 508

4 Peptide Emergence, Evolution and Selection
on the Primitive Earth. I. Convergent Formation
of N-Carbamoyl Amino Acids Rather than Free α-Amino
Acids?

Auguste Commeyras, Laurent Boiteau, Odile Vandenabeele-Trambouze,
Franck Selvis .. 517

4.1 Introduction .. 517
4.2 Organic Molecules on the Primitive Earth 518
4.3 Exogenous Amino Acids and Related Compounds 519
 4.3.1 Exhaustive Survey of Exogenous Amino Acids 519
 4.3.2 Formation Mechanisms of Exogenous Amino Acids 520
 4.3.3 Other Meteoritic Compounds Closely Related
 to Amino Acids ... 525
 4.3.4 Non-Racemic Exogenous α-Amino Acids 526
5 Peptide Emergence, Evolution and Selection on the Primitive Earth. II. The Primary Pump Scenario
Auguste Commenges, Laurent Boiteau, Odile Vandenabeele-Trambouze,
Franck Selsis ... 547
5.1 From N-carbamoyl Amino Acids (CAA) to Peptides .. 547
5.1.1 Introduction 547
5.1.2 The Primary Pump 549
5.2 Environmental Requirements .. 551
5.2.1 Primitive Earth 551
5.2.2 Primitive Atmosphere 552
5.2.3 About the pH of Primitive Oceans 556
5.3 Investigation of the Primary Pump 557
5.3.1 Step-By-Step Experimental Investigation 558
5.3.2 Integrated Experimental Approach: Chemoselectivity 561
5.4 Energy ... 563
5.5 Conclusions and Perspectives 565
References ... 566

6 The RNA World: Hypotheses, Facts and Experimental Results
Marie-Christine Maurel, Anne-Lise Haenni ... 571
6.1 The Modern RNA World .. 571
6.1.1 Where in the Living Cell is RNA Found? 571
6.2 An RNA World at the Origin of Life? 577
7 Looking for the Most ‘Primitive’ Life Forms: Pitfalls and Progresses

Simonetta Gribaldo, Patrick Fortherre

7.1 Simpler Doesn’t Necessarily Mean Older! .. 596

7.2 Hyperthermophiles are not Primitives, but are Remnants from Thermophilic Organisms .. 597

7.2.1 Hyperthermophiles and the Hypothesis of a Hot Origin of Life 597

7.2.2 Hyperthermophiles are Complex Prokaryotes 598

7.2.3 Origin of Hyperthermophily .. 600

7.2.4 LUCA was Probably not a Hyperthermophile 601

7.2.5 Temperature and the RNA World ... 603

7.3 Comparative Genomics: a Novel Approach to Retrace Our Most Distant Past ... 604

7.3.1 Simple or Complex LUCA? A RNA or a DNA Genome? 604

7.3.2 A Key Step: the Apparition of DNA .. 606

7.3.3 Viruses: Essential Players in Evolution .. 608

7.3.4 The Origin of the Nucleus: a Further Puzzle 609

7.4 Conclusions and Perspectives ... 611

7.4.1 More Data are Needed ... 611

7.4.2 To not Forget Darwin! ... 611

References .. 612

8 The Universal Tree of Life:
From Simple to Complex or From Complex to Simple

Henner Brinkmann, Hervé Philippe .. 617

8.1 Principles of Tree-Reconstruction Methods 617

8.2 The Universal Tree of Life According to Woese 621

8.3 Reconstruction Artefacts ... 624

8.3.1 Multiple Substitutions Generate Reconstruction Problems 624
<table>
<thead>
<tr>
<th>Contents</th>
<th>XXV</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.2</td>
<td>Mutational Saturation Versus Resolving Power</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Compositional Bias</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Long-branch Attraction</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Heterotachy</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Rare Genomic Events as an Alternative Approach?</td>
</tr>
<tr>
<td>8.4</td>
<td>Lateral Gene Transfer and the Quest for a Phylogeny of the Organisms</td>
</tr>
<tr>
<td>8.5</td>
<td>A New Evaluation of the Universal Tree of Life</td>
</tr>
<tr>
<td>8.5.1</td>
<td>The Root of the Universal Tree of Life</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Prokaryotic Phylogeny</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Eukaryotic Phylogeny</td>
</tr>
<tr>
<td>8.6</td>
<td>The Importance of an Evolution by Simplification and by Extinction</td>
</tr>
<tr>
<td>8.7</td>
<td>Exobiology, a Procession of Extinctions?</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>9</td>
<td>Extremophiles</td>
</tr>
<tr>
<td>9.1</td>
<td>Some Concepts About Extremophiles</td>
</tr>
<tr>
<td>9.1.1</td>
<td>What is an Extremophile?</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Some Extremophile Features</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Why Extremophiles are Interesting?</td>
</tr>
<tr>
<td>9.2</td>
<td>Microbial Diversity</td>
</tr>
<tr>
<td>9.3</td>
<td>Extreme Environments and Their Inhabitants</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Extremophiles and Extremotolerants</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Phylogenetic Groups Best Adapted to Extreme Conditions</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Resistance Forms and Longevity</td>
</tr>
<tr>
<td>9.4</td>
<td>Extremophiles and Exobiology</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Hyperthermophiles</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Psychrophiles</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Halophiles and Evaporites</td>
</tr>
<tr>
<td>9.4.4</td>
<td>The Deep Biosphere</td>
</tr>
<tr>
<td>9.5</td>
<td>Perspectives</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>Part III</td>
<td>Appendices</td>
</tr>
<tr>
<td>1</td>
<td>Earth Structure and Plate Tectonics: Basic Knowledge</td>
</tr>
<tr>
<td>Hervé Martin</td>
<td>683</td>
</tr>
<tr>
<td>1.1</td>
<td>Earth Internal Structure</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Inner Core (from 6378 to 5155 km Depth)</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Outer Core (from 5155 to 2891 km Depth)</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Lower Mantle (from 2891 to 670 km Depth)</td>
</tr>
</tbody>
</table>
XXVI Contents

1.1.4 Upper Mantle (from 670 km to 7 km Depth Under Oceans and 30 km Depth Under Continents) ... 685
1.1.5 Crusts (from 7 km Depth Under Oceans and 30 km Depth Under Continents to Surface) ... 685
1.1.6 Hydrosphere ... 686
1.1.7 Atmosphere ... 686
1.1.8 Lithosphere and Asthenosphere .. 686

1.2 Plate Tectonics ... 687
1.2.1 Plates on the Surface of the Earth 687
1.2.2 Margin Definitions .. 687
1.2.3 Divergent Margin .. 688
1.2.4 Convergent Margin .. 691
1.2.5 Hot Spots .. 693
1.2.6 Wilson Cycle .. 694
1.2.7 Energy for Plate Tectonics ... 695

References .. 695

2 Useful Astrobiological Data .. 697
2.1 Physical and Chemical Data .. 697
2.2 Astrophysical Data .. 704
2.3 Geological Data ... 709
2.4 Biochemical Data .. 719

3 Glossary ... 725

4 Authors .. 775

5 Index ... 785
Astrobiology, also known as bioastronomy or exobiology, refers to a vast area of scientific research. The formation of the solar system, its accretion and the formation of the planets, the origin of the molecules out of which living beings are made, the traces of present and past life within the solar system and elsewhere, as well as the search for extra-solar planets, are all part of astrobiology. And the above list is not exhaustive.

For obvious reasons, astrobiology is a field without the traditional barriers between astronomers, chemists, physicists, geologists, and biologists or between experimentalists and theorists, observers and those who model the observations. As such, a single researcher cannot possess all the knowledge necessary to be an “astrobologist”. One can even go a step further and say that while astrobiology clearly exists as a field of scientific research, there are no astrobiologists. Astrobiology exists at a higher level of organization where the knowledge is not that of an individual but that of a research community whose members all share the same interest for the fundamental questions concerning the emergence of life, its evolution, and how life is distributed on Earth and throughout the universe. Each person contributes in piecing together this vast puzzle through their knowledge and their experimental and theoretical tools.

As often, if not always, when treating questions dealing with the past or with a sort of “elsewhere” where one cannot go and that one can only study indirectly, we must be satisfied with plausible scenarios rather than clear proof or other certainties. In this way, the strategy of the astrobiologist is similar to that of an archaeologist or a paleontologist. There exists, however, major differences between the path of a chemist interested in the origin of life, and thus in prebiotic chemical evolution, that of a biologist wanting to follow time back starting with current life, and that of a paleontologist searching for the traces of primitive life and its evolution and extinctions.

While paleontologists have some hard data at hand (fossils and other physical traces), the situation is very different for chemists, who are obliged to build a plausible scenario for the appearance of life based on hypotheses developed by specialists in other fields (composition of the primitive terrestrial atmosphere, addition of extraterrestrial organic material, etc.). For the most part, these hypotheses are unverifiable. The biologist, on the other hand, tries to use phylogenetic tools to find and understand LUCA, the first common ancestor who must have been preceded by other micro-organisms with no descendants.
Similarly, there is an important difference between the strategies of a geologist, expert in the transition between the Tertiary and Cretaceous periods, and the planetologist who would like to describe the Earth during the period of intense meteoritic bombardment. The former disposes of observations and measures (iridium content, sediment ashes, shocked quartz, etc.), which provide a reasonable explanation for the great biological Cretaceous Tertiary crisis caused by a major meteorite impact. The latter only has access to indirect data based on observations of lunar craters but also simulations, which are of course based on theoretical models.

Since every scientist has a limited area of expertise, the scenario that he/she proposes can only be validated by the constraints and parameters that he/she knows and masters. Such an individual strategy can thus lead to as many scenarios as there are researchers. A multidisciplinary approach has the advantage of subjecting each individual proposition to a much larger number of constraints. This naturally leads to the rejection of “weak” scenarios and to the emergence of more robust hypotheses. For example, it is pointless for a chemist to invoke the role of a prebiotic chemical reaction if the conditions needed for the reaction to occur are completely incompatible with the primitive Earth conditions determined by the planetologists. This simple example illustrates the importance of interdisciplinary discussion for all those who consider themselves to be astrobiologists. The CNRS summer schools such as Propriano in 1999 and 2003 and La Colle-sur-Loup in 2001 have contributed to strengthening the dialog within the French scientific community.

The goal of the first summer school, Exobio’99 in Propriano, was to provide participants with an objective image of what we know today about the early Earth conditions – the oceans, the proto-continents, the atmosphere, and even the climate – but also of what we know about the solar system during the first billion years of its history. Some stages in the chemical evolution that may have occurred on the young planet Earth, with a different solar radiation, less intense in the visible part of the spectrum but much more intense in the RX region were also discussed during the first summer school. The discussion then moves towards the biological evolution, the early stages of which are still very poorly understood. The problems related to the exploration of Mars and Titan were then addressed.

The second summer school, Exobio ‘01 in La Colle-sur-Loup, was more oriented towards the chemistry, molecular biology, biochemistry, and biological evolution of early Earth. Its main theme was the study of organisms referred to as extremophiles, which could provide information on the nature of the first unicellular organisms that populated the young oceans. Among the specific topics addressed were the autoformation of biological membranes, the possible origins of the homochirality of the constituents of living beings, the protometabolisms that may be inferred from the study of metabolisms, and the possible role of ribozymes before the emergence of catalysis by proteinic enzymes.
The texts that follow represent the first volume of the series “Lectures in Astrobiology” and are the result of the first two schools. The chapters were written for readers already familiar with the general topic of the origin of life and life “elsewhere” but not to the extent to which each specialist is in his own discipline. As such, they are meant as much for students as for established scientists seeking to broaden their horizons in the vast field of the origins of life. We hope these texts will initiate vocations and incite researchers and students specialized in one of the individual fields to join the broad forum of astrobiology. It is undeniable that the questions forming the basis of astrobiology are among the big questions that humanity has asked itself since its inception and which recent decades have attempted to answer; answers that seem more and more plausible although necessarily partial.

Acknowledgements

This book is the product of a multidisciplinary community, the members of which all question the knowledge from their disciplines at origin in order to build together the complex structure, which this area of research represents. One needs a very open mind as well as the ability to question ones ideas through the recent discoveries in other fields.

A group of international reviewers and ourselves have read the set of texts that follow. The final versions of these texts, after multiple rewritings and long discussions, sometimes required the opinions of five or six specialists.

We would therefore like to thank all of the authors who have accepted these remarks, criticisms, and multiple discussions warmly, but also all of the “specialist reviewers” who, through their expertise, have contributed to the general coherence of this work.

Last but not least, the editors call upon the reader’s indulgence concerning some (or many!) misusages of the English language; English is not the mother tongue of the large majority of authors.

Muriel Gargaud
Bernard Barbier
Hervé Martin
Jacques Reisse
Researches related to the origins of life can develop in two different directions: they can look towards the past and try to determine how life appeared on Earth, or they can explore present-day Universe in the hunt for life. Both ways proceed by using the same strategy: research of “favourable” conditions for life to appear. These conditions are the necessary prerequisites for prebiotic chemistry to occur. Of course, until now, nobody has been able to create life but, nevertheless, chemists determined the necessary conditions to generate amino acids, purine and pyrimidine bases and many other “small” molecules. They also know how to obtain (small) polypeptides and even how to create membranes.

Very often, many plausible prebiotic scenarios have been tested and, as several experimental procedures are able to lead to the same results, there is no unique solution. These different procedures permit minimal requirements to be established in terms of pressure, temperature, pH and reactants, which are necessary to obtain some of the main components (molecules as well as supramolecular systems) of living species. For instance, liquid water is a parameter that appears crucial for prebiotic chemistry and life development. Such a condition allows both thermodynamic and compositional constraints to be fixed. Of course, the basic elements for life (C, O, H, N, etc.) must also be available.

This is why planetologists develop intensive researches in order to determine if liquid water is or was present on planets and satellites of the Solar System (Mars, Europa . . .). Moreover, the research of extrasolar planets becomes a very important and attractive challenge and the recent discovery of some extrasolar planetary atmospheres appears fundamental in the research of sites favourable for life development. For the Earth’s and the other solar planets, the atmosphere origins (as well as the origin of water and C-, O-, N-, H-bearing molecules) are assessed to be endogenous or/and exogenous. Consequently, it becomes critical to determine the respective importance of endogenous and exogenous processes. In the exogenous case, matter is assumed to come from other parts of the Solar System and to have been transferred to Earth surface by comets, asteroids, meteorites and micrometeorites. These are the reasons why astrobiology is deeply interested not only in various aspects of cosmology and nucleosynthesis but also in the accretion process of the Solar System and more generally of planetary systems around stars. How elements and even molecules, initially present in the protosolar nebula, were redistributed and transformed during accretion is also a problem of major interest.
On the other hand, geological and biological investigations on Earth showed that autotrophic life can develop without light energy, as proved by life development associated to submarine black smokers. These hydrothermal vents are genetically linked to the internal Earth heat production and then to plate tectonics. This points to the possibility for life to develop not only because of solar energy but also due to planetary internal energy. On Earth, plate tectonics lead to a bimodal repartition on altitudes (ocean vs. continent). The possible discovery of a bimodal altitude distribution on Mars provides a strong argument in favour of an early plate-tectonic activity and also appears as a fundamental element for research of early life on this planet. Similarly, the possibility to have submarine hydrothermal vents on Europa, one of the satellites of Jupiter, is an exciting possibility. Evidence for the discovery of life in the Solar System or better on exoplanets, would demonstrate that the emergence of life does not result from the succession of highly improbable and complex events that occurred only on Earth. On the contrary, it would show that more simple processes are involved in the appearance of life, processes able to develop and to be reproduced in several places in the universe.

Looking to Earth past could appear easier as we are sure that at least one time in Earth history all conditions for life development were realised. Unfortunately, this is the only certainty we have and as we look farther into the past more the record of traces of life is tiny and ambiguous. Indeed, very old rocks (older than 3.8 Ga) are not very abundant and even if they are preserved they have been transformed by tectonic and metamorphic processes. The debate around Isua (3.85 Ga) traces of life is a perfect illustration of the difficulty to obtain a clear and unambiguous interpretation of geological records. Strategies are now being developed in order to clearly and unambiguously identify very old fossil traces of life.

In addition, some parameters such as atmosphere and also ocean compositions are drastically different today from what they have been on early Earth. Similarly, due to Earth cooling, terrestrial dynamics changed in the course of time, generating rocks such as komatiites that are no longer produced. Moreover, it is not clearly established when plate tectonics began to operate on Earth. Some scenarios for life development imply alternation of dry and aqueous periods, which means that emerged continents existed but we do not possess obvious evidences of emerged continents before 3.5 Ga. This does not indicate that they did not exist but it adds a greater level of uncertainty in the life-emergence scenarios.

This is why, in order to discuss the conditions prevailing on Earth at that time, researches develop towards the oldest preserved rocks. Unfortunately, rocks older than 4.0 Ga are still poorly known, so that modelling and simulation are still more or less the only ways to discuss and reconstruct the first 500Ma of our planet.
Second Part Introduction

Chemical evolution, which started very early in our Universe, is not only a preliminary but also an essential step to any biological evolution. All the discussions concerning a hypothetical RNA world evolving towards a DNA world is based on the assumption that deoxyribose derives from ribose or, at least, that the replacement of ribose by deoxyribose was an important step in biological evolution. Many other examples of the interdependence between chemical evolution and biological evolution are known.

Unfortunately, we have no molecular fossils or relics of the prebiotic world and our knowledge about molecular evolution during the prebiotic period is based on models and scenarios. These scenarios themselves are based on hypotheses concerning the physico-chemical conditions present at the surface of the young Earth. They are also supported by experimental simulations and by indirect observations. Indeed, interstellar clouds that can be observed today are probably not very different from the protosolar nebula and chondritic and micrometeoritic matter that we can study in our laboratories today are probably similar to the chondritic or cometary matter that fell on the young Earth in large quantities during the prebiotic period. LUCA (our last universal common ancestor) was most probably a unicellular entity with a membrane, a metabolism, a reproduction capability and therefore a genetic code. LUCA itself was most probably not the most primitive form of life on Earth. Chemists and biologists must introduce constraints into the scenarios they suggest for the transition steps from nonlife to life. These constraints are based on what we know about the chemical elements and their reactivity, about the physicochemical laws, and very importantly, about the conditions prevailing on the young Earth when the transition occurred. The study of extreme biotopes on Earth, such as the ices above the Vostock Lake or the vicinity of oceanic black smokers, yields information about the diversity of life and also about the eventual universal requirements for life.

Together with astronomers, planetologists and geologists, biologists and chemists involved in exobiological studies participate in the elaboration of these models. As already mentioned, the chemist has no relics, no molecular fossils of the prebiotic period but he/she is the only one who can perform experimental simulations to help a model progress. The biochemist and the biologist are the only ones who work with living species, they know how living species have evolved and they are ready to take the risk to extrapolate towards the past: their
approach could be described as a top-down approach while the chemists have a bottom-up approach. The hope (or better the dream) is that, one day, chemists and biologists could reach a similar conclusion about what LUCA looked like!

For the chemist, as for all "specialists" involved in exobiology, the most important contribution to the field can only come from their capacity to interact efficiently with other specialists. Exobiology is probably the best example of an interdisciplinary science: all natural sciences but also mathematics and informatics participate to its development. The next ensemble of chapters is a clear example of the work of chemists, biochemists and biologists, working in different fields but searching to contribute to the understanding of what remains an important problem: the emergence of life from nonlife.